YES(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleSinglestart(A,B) -> evalSimpleSingleentryin(A,B) True (1,1) 1. evalSimpleSingleentryin(A,B) -> evalSimpleSinglebb3in(0,B) True (?,1) 2. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglebbin(A,B) [A >= 0 && B >= 1 + A] (?,1) 3. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglereturnin(A,B) [A >= 0 && A >= B] (?,1) 4. evalSimpleSinglebbin(A,B) -> evalSimpleSinglebb3in(1 + A,B) [-1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && A >= 0] (?,1) 5. evalSimpleSinglereturnin(A,B) -> evalSimpleSinglestop(A,B) [A + -1*B >= 0 && A >= 0] (?,1) Signature: {(evalSimpleSinglebb3in,2) ;(evalSimpleSinglebbin,2) ;(evalSimpleSingleentryin,2) ;(evalSimpleSinglereturnin,2) ;(evalSimpleSinglestart,2) ;(evalSimpleSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleSinglestart(A,B) -> evalSimpleSingleentryin(A,B) True (1,1) 1. evalSimpleSingleentryin(A,B) -> evalSimpleSinglebb3in(0,B) True (1,1) 2. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglebbin(A,B) [A >= 0 && B >= 1 + A] (?,1) 3. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglereturnin(A,B) [A >= 0 && A >= B] (1,1) 4. evalSimpleSinglebbin(A,B) -> evalSimpleSinglebb3in(1 + A,B) [-1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && A >= 0] (?,1) 5. evalSimpleSinglereturnin(A,B) -> evalSimpleSinglestop(A,B) [A + -1*B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleSinglebb3in,2) ;(evalSimpleSinglebbin,2) ;(evalSimpleSingleentryin,2) ;(evalSimpleSinglereturnin,2) ;(evalSimpleSinglestart,2) ;(evalSimpleSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleSinglebb3in) = -1*x1 + x2 p(evalSimpleSinglebbin) = -1*x1 + x2 p(evalSimpleSingleentryin) = x2 p(evalSimpleSinglereturnin) = -1*x1 + x2 p(evalSimpleSinglestart) = x2 p(evalSimpleSinglestop) = -1*x1 + x2 Following rules are strictly oriented: [-1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && A >= 0] ==> evalSimpleSinglebbin(A,B) = -1*A + B > -1 + -1*A + B = evalSimpleSinglebb3in(1 + A,B) Following rules are weakly oriented: True ==> evalSimpleSinglestart(A,B) = B >= B = evalSimpleSingleentryin(A,B) True ==> evalSimpleSingleentryin(A,B) = B >= B = evalSimpleSinglebb3in(0,B) [A >= 0 && B >= 1 + A] ==> evalSimpleSinglebb3in(A,B) = -1*A + B >= -1*A + B = evalSimpleSinglebbin(A,B) [A >= 0 && A >= B] ==> evalSimpleSinglebb3in(A,B) = -1*A + B >= -1*A + B = evalSimpleSinglereturnin(A,B) [A + -1*B >= 0 && A >= 0] ==> evalSimpleSinglereturnin(A,B) = -1*A + B >= -1*A + B = evalSimpleSinglestop(A,B) * Step 3: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleSinglestart(A,B) -> evalSimpleSingleentryin(A,B) True (1,1) 1. evalSimpleSingleentryin(A,B) -> evalSimpleSinglebb3in(0,B) True (1,1) 2. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglebbin(A,B) [A >= 0 && B >= 1 + A] (?,1) 3. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglereturnin(A,B) [A >= 0 && A >= B] (1,1) 4. evalSimpleSinglebbin(A,B) -> evalSimpleSinglebb3in(1 + A,B) [-1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && A >= 0] (B,1) 5. evalSimpleSinglereturnin(A,B) -> evalSimpleSinglestop(A,B) [A + -1*B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleSinglebb3in,2) ;(evalSimpleSinglebbin,2) ;(evalSimpleSingleentryin,2) ;(evalSimpleSinglereturnin,2) ;(evalSimpleSinglestart,2) ;(evalSimpleSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleSinglestart(A,B) -> evalSimpleSingleentryin(A,B) True (1,1) 1. evalSimpleSingleentryin(A,B) -> evalSimpleSinglebb3in(0,B) True (1,1) 2. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglebbin(A,B) [A >= 0 && B >= 1 + A] (1 + B,1) 3. evalSimpleSinglebb3in(A,B) -> evalSimpleSinglereturnin(A,B) [A >= 0 && A >= B] (1,1) 4. evalSimpleSinglebbin(A,B) -> evalSimpleSinglebb3in(1 + A,B) [-1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && A >= 0] (B,1) 5. evalSimpleSinglereturnin(A,B) -> evalSimpleSinglestop(A,B) [A + -1*B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleSinglebb3in,2) ;(evalSimpleSinglebbin,2) ;(evalSimpleSingleentryin,2) ;(evalSimpleSinglereturnin,2) ;(evalSimpleSinglestart,2) ;(evalSimpleSinglestop,2)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{5},4->{2,3},5->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: The problem is already solved. YES(?,O(n^1))