YES(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (?,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] (?,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) [-1 + D >= 0 (?,1) && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) [A + -1*D >= 0 (?,1) && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] (?,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] (1,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) [-1 + D >= 0 (?,1) && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) [A + -1*D >= 0 (?,1) && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(6,3)] * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] (1,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) [-1 + D >= 0 (?,1) && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) [A + -1*D >= 0 (?,1) && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultiplebb1in) = -1*x2 + x3 p(evalSimpleMultiplebb2in) = -1*x2 + x3 p(evalSimpleMultiplebb3in) = -1*x2 + x3 p(evalSimpleMultiplebbin) = -1*x2 + x3 p(evalSimpleMultipleentryin) = x3 p(evalSimpleMultiplereturnin) = -1*x2 + x3 p(evalSimpleMultiplestart) = x3 p(evalSimpleMultiplestop) = -1*x2 + x3 Following rules are strictly oriented: [A + -1*D >= 0 ==> && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] evalSimpleMultiplebb2in(A,B,C,D) = -1*B + C > -1 + -1*B + C = evalSimpleMultiplebb3in(A,1 + B,C,D) Following rules are weakly oriented: True ==> evalSimpleMultiplestart(A,B,C,D) = C >= C = evalSimpleMultipleentryin(A,B,C,D) True ==> evalSimpleMultipleentryin(A,B,C,D) = C >= C = evalSimpleMultiplebb3in(0,0,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] ==> evalSimpleMultiplebb3in(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] ==> evalSimpleMultiplebb3in(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultiplereturnin(A,B,C,D) [-1 + C >= 0 ==> && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] evalSimpleMultiplebbin(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 ==> && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] evalSimpleMultiplebbin(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultiplebb2in(A,B,C,D) [-1 + D >= 0 ==> && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] evalSimpleMultiplebb1in(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultiplebb3in(1 + A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] ==> evalSimpleMultiplereturnin(A,B,C,D) = -1*B + C >= -1*B + C = evalSimpleMultiplestop(A,B,C,D) * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] (1,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) [-1 + D >= 0 (?,1) && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) [A + -1*D >= 0 (C,1) && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalSimpleMultiplebb1in) = -1*x1 + x4 p(evalSimpleMultiplebb2in) = -1*x1 + x4 p(evalSimpleMultiplebb3in) = -1*x1 + x4 p(evalSimpleMultiplebbin) = -1*x1 + x4 p(evalSimpleMultipleentryin) = x4 p(evalSimpleMultiplereturnin) = -1*x1 + x4 p(evalSimpleMultiplestart) = x4 p(evalSimpleMultiplestop) = -1*x1 + x4 Following rules are strictly oriented: [-1 + D >= 0 ==> && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] evalSimpleMultiplebb1in(A,B,C,D) = -1*A + D > -1 + -1*A + D = evalSimpleMultiplebb3in(1 + A,B,C,D) Following rules are weakly oriented: True ==> evalSimpleMultiplestart(A,B,C,D) = D >= D = evalSimpleMultipleentryin(A,B,C,D) True ==> evalSimpleMultipleentryin(A,B,C,D) = D >= D = evalSimpleMultiplebb3in(0,0,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] ==> evalSimpleMultiplebb3in(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] ==> evalSimpleMultiplebb3in(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplereturnin(A,B,C,D) [-1 + C >= 0 ==> && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] evalSimpleMultiplebbin(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 ==> && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] evalSimpleMultiplebbin(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplebb2in(A,B,C,D) [A + -1*D >= 0 ==> && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] evalSimpleMultiplebb2in(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplebb3in(A,1 + B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] ==> evalSimpleMultiplereturnin(A,B,C,D) = -1*A + D >= -1*A + D = evalSimpleMultiplestop(A,B,C,D) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] (?,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] (1,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [-1 + C >= 0 (?,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) [-1 + D >= 0 (D,1) && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) [A + -1*D >= 0 (C,1) && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 6: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. evalSimpleMultiplestart(A,B,C,D) -> evalSimpleMultipleentryin(A,B,C,D) True (1,1) 1. evalSimpleMultipleentryin(A,B,C,D) -> evalSimpleMultiplebb3in(0,0,C,D) True (1,1) 2. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplebbin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && C >= 1 + B] (1 + C + D,1) 3. evalSimpleMultiplebb3in(A,B,C,D) -> evalSimpleMultiplereturnin(A,B,C,D) [B >= 0 && A + B >= 0 && A >= 0 && B >= C] (1,1) 4. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb1in(A,B,C,D) [-1 + C >= 0 (1 + C + D,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && D >= 1 + A] 5. evalSimpleMultiplebbin(A,B,C,D) -> evalSimpleMultiplebb2in(A,B,C,D) [-1 + C >= 0 (1 + C + D,1) && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0 && A >= D] 6. evalSimpleMultiplebb1in(A,B,C,D) -> evalSimpleMultiplebb3in(1 + A,B,C,D) [-1 + D >= 0 (D,1) && -2 + C + D >= 0 && -1 + B + D >= 0 && -1 + A + D >= 0 && -1 + -1*A + D >= 0 && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 7. evalSimpleMultiplebb2in(A,B,C,D) -> evalSimpleMultiplebb3in(A,1 + B,C,D) [A + -1*D >= 0 (C,1) && -1 + C >= 0 && -1 + B + C >= 0 && -1 + -1*B + C >= 0 && -1 + A + C >= 0 && B >= 0 && A + B >= 0 && A >= 0] 8. evalSimpleMultiplereturnin(A,B,C,D) -> evalSimpleMultiplestop(A,B,C,D) [B + -1*C >= 0 && B >= 0 && A + B >= 0 && A >= 0] (1,1) Signature: {(evalSimpleMultiplebb1in,4) ;(evalSimpleMultiplebb2in,4) ;(evalSimpleMultiplebb3in,4) ;(evalSimpleMultiplebbin,4) ;(evalSimpleMultipleentryin,4) ;(evalSimpleMultiplereturnin,4) ;(evalSimpleMultiplestart,4) ;(evalSimpleMultiplestop,4)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: The problem is already solved. YES(?,O(n^1))