YES(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [A >= B] (?,1) 2. f300(A,B,C) -> f300(1 + A,B,C) [B >= 1 + A] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2},1->{},2->{1,2}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [A >= B] (1,1) 2. f300(A,B,C) -> f300(1 + A,B,C) [B >= 1 + A] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2},1->{},2->{1,2}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = -1*x1 + x2 p(f2) = -1*x1 + x2 p(f300) = -1*x1 + x2 Following rules are strictly oriented: [B >= 1 + A] ==> f300(A,B,C) = -1*A + B > -1 + -1*A + B = f300(1 + A,B,C) Following rules are weakly oriented: True ==> f2(A,B,C) = -1*A + B >= -1*A + B = f300(A,B,C) [A >= B] ==> f300(A,B,C) = -1*A + B >= -1*A + B = f1(A,B,D) * Step 3: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [A >= B] (1,1) 2. f300(A,B,C) -> f300(1 + A,B,C) [B >= 1 + A] (A + B,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2},1->{},2->{1,2}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))