YES(?,O(1)) * Step 1: TrivialSCCs WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f3(1,B) True (1,1) 1. f3(A,B) -> f3(1 + A,10 + -1*A) [-1 + A >= 0 && 10 >= A] (?,1) 2. f3(A,B) -> f10(A,B) [-1 + A >= 0 && A >= 11] (?,1) Signature: {(f0,2);(f10,2);(f3,2)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f3(1,B) True (1,1) 1. f3(A,B) -> f3(1 + A,10 + -1*A) [-1 + A >= 0 && 10 >= A] (?,1) 2. f3(A,B) -> f10(A,B) [-1 + A >= 0 && A >= 11] (1,1) Signature: {(f0,2);(f10,2);(f3,2)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2)] * Step 3: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f3(1,B) True (1,1) 1. f3(A,B) -> f3(1 + A,10 + -1*A) [-1 + A >= 0 && 10 >= A] (?,1) 2. f3(A,B) -> f10(A,B) [-1 + A >= 0 && A >= 11] (1,1) Signature: {(f0,2);(f10,2);(f3,2)} Flow Graph: [0->{1},1->{1,2},2->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 10 p(f10) = 11 + -1*x1 p(f3) = 11 + -1*x1 Following rules are strictly oriented: [-1 + A >= 0 && 10 >= A] ==> f3(A,B) = 11 + -1*A > 10 + -1*A = f3(1 + A,10 + -1*A) Following rules are weakly oriented: True ==> f0(A,B) = 10 >= 10 = f3(1,B) [-1 + A >= 0 && A >= 11] ==> f3(A,B) = 11 + -1*A >= 11 + -1*A = f10(A,B) * Step 4: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f3(1,B) True (1,1) 1. f3(A,B) -> f3(1 + A,10 + -1*A) [-1 + A >= 0 && 10 >= A] (10,1) 2. f3(A,B) -> f10(A,B) [-1 + A >= 0 && A >= 11] (1,1) Signature: {(f0,2);(f10,2);(f3,2)} Flow Graph: [0->{1},1->{1,2},2->{}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(1))