YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 2. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 3. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2,3},2->{1,2,3},3->{1,2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3),(2,2),(2,3),(3,1)] * Step 2: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 2. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 3. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (?,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2},2->{1},3->{2,3}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2*x1 p(start) = 2*x1 Following rules are strictly oriented: [A + B >= 1 && A >= 1 + B] ==> eval(A,B) = 2*A > -2 + 2*A = eval(-1 + A,B) Following rules are weakly oriented: True ==> start(A,B) = 2*A >= 2*A = eval(A,B) [A + B >= 1 && B >= A && B >= 1 + A] ==> eval(A,B) = 2*A >= 2*A = eval(A,-1 + B) [2*A >= 1 && B = A] ==> eval(A,B) = 2*A >= -2 + 2*A = eval(-1 + A,B) * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 2. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (?,1) 3. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (2*A,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2},2->{1},3->{2,3}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2*x1 p(start) = 2*x1 Following rules are strictly oriented: [2*A >= 1 && B = A] ==> eval(A,B) = 2*A > -2 + 2*A = eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] ==> eval(A,B) = 2*A > -2 + 2*A = eval(-1 + A,B) Following rules are weakly oriented: True ==> start(A,B) = 2*A >= 2*A = eval(A,B) [A + B >= 1 && B >= A && B >= 1 + A] ==> eval(A,B) = 2*A >= 2*A = eval(A,-1 + B) * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (?,1) 2. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (2*A,1) 3. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (2*A,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2},2->{1},3->{2,3}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2*x2 p(start) = 2*x2 Following rules are strictly oriented: [A + B >= 1 && B >= A && B >= 1 + A] ==> eval(A,B) = 2*B > -2 + 2*B = eval(A,-1 + B) Following rules are weakly oriented: True ==> start(A,B) = 2*B >= 2*B = eval(A,B) [2*A >= 1 && B = A] ==> eval(A,B) = 2*B >= 2*B = eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] ==> eval(A,B) = 2*B >= 2*B = eval(-1 + A,B) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && B >= A && B >= 1 + A] (2*B,1) 2. eval(A,B) -> eval(-1 + A,B) [2*A >= 1 && B = A] (2*A,1) 3. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1 + B] (2*A,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2},2->{1},3->{2,3}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))