NO * Step 1: TrivialSCCs NO + Considered Problem: Rules: 0. evalfstart(A,B) -> evalfentryin(A,B) True (1,1) 1. evalfentryin(A,B) -> evalfbb3in(B,A) True (?,1) 2. evalfbb3in(A,B) -> evalfbbin(A,B) [B >= 1 && 254 >= B] (?,1) 3. evalfbb3in(A,B) -> evalfreturnin(A,B) [0 >= B] (?,1) 4. evalfbb3in(A,B) -> evalfreturnin(A,B) [B >= 255] (?,1) 5. evalfbbin(A,B) -> evalfbb1in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && 0 >= 1 + A] (?,1) 6. evalfbbin(A,B) -> evalfbb1in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && A >= 1] (?,1) 7. evalfbbin(A,B) -> evalfbb2in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && A = 0] (?,1) 8. evalfbb1in(A,B) -> evalfbb3in(A,1 + B) [254 + -1*B >= 0 && -1 + B >= 0] (?,1) 9. evalfbb2in(A,B) -> evalfbb3in(A,-1 + B) [254 + -1*B >= 0 (?,1) && 254 + A + -1*B >= 0 && 254 + -1*A + -1*B >= 0 && -1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0 && A >= 0] 10. evalfreturnin(A,B) -> evalfstop(A,B) True (?,1) Signature: {(evalfbb1in,2) ;(evalfbb2in,2) ;(evalfbb3in,2) ;(evalfbbin,2) ;(evalfentryin,2) ;(evalfreturnin,2) ;(evalfstart,2) ;(evalfstop,2)} Flow Graph: [0->{1},1->{2,3,4},2->{5,6,7},3->{10},4->{10},5->{8},6->{8},7->{9},8->{2,3,4},9->{2,3,4},10->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths NO + Considered Problem: Rules: 0. evalfstart(A,B) -> evalfentryin(A,B) True (1,1) 1. evalfentryin(A,B) -> evalfbb3in(B,A) True (1,1) 2. evalfbb3in(A,B) -> evalfbbin(A,B) [B >= 1 && 254 >= B] (?,1) 3. evalfbb3in(A,B) -> evalfreturnin(A,B) [0 >= B] (1,1) 4. evalfbb3in(A,B) -> evalfreturnin(A,B) [B >= 255] (1,1) 5. evalfbbin(A,B) -> evalfbb1in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && 0 >= 1 + A] (?,1) 6. evalfbbin(A,B) -> evalfbb1in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && A >= 1] (?,1) 7. evalfbbin(A,B) -> evalfbb2in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && A = 0] (?,1) 8. evalfbb1in(A,B) -> evalfbb3in(A,1 + B) [254 + -1*B >= 0 && -1 + B >= 0] (?,1) 9. evalfbb2in(A,B) -> evalfbb3in(A,-1 + B) [254 + -1*B >= 0 (?,1) && 254 + A + -1*B >= 0 && 254 + -1*A + -1*B >= 0 && -1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0 && A >= 0] 10. evalfreturnin(A,B) -> evalfstop(A,B) True (1,1) Signature: {(evalfbb1in,2) ;(evalfbb2in,2) ;(evalfbb3in,2) ;(evalfbbin,2) ;(evalfentryin,2) ;(evalfreturnin,2) ;(evalfstart,2) ;(evalfstop,2)} Flow Graph: [0->{1},1->{2,3,4},2->{5,6,7},3->{10},4->{10},5->{8},6->{8},7->{9},8->{2,3,4},9->{2,3,4},10->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(8,3),(9,4)] * Step 3: Looptree NO + Considered Problem: Rules: 0. evalfstart(A,B) -> evalfentryin(A,B) True (1,1) 1. evalfentryin(A,B) -> evalfbb3in(B,A) True (1,1) 2. evalfbb3in(A,B) -> evalfbbin(A,B) [B >= 1 && 254 >= B] (?,1) 3. evalfbb3in(A,B) -> evalfreturnin(A,B) [0 >= B] (1,1) 4. evalfbb3in(A,B) -> evalfreturnin(A,B) [B >= 255] (1,1) 5. evalfbbin(A,B) -> evalfbb1in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && 0 >= 1 + A] (?,1) 6. evalfbbin(A,B) -> evalfbb1in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && A >= 1] (?,1) 7. evalfbbin(A,B) -> evalfbb2in(A,B) [254 + -1*B >= 0 && -1 + B >= 0 && A = 0] (?,1) 8. evalfbb1in(A,B) -> evalfbb3in(A,1 + B) [254 + -1*B >= 0 && -1 + B >= 0] (?,1) 9. evalfbb2in(A,B) -> evalfbb3in(A,-1 + B) [254 + -1*B >= 0 (?,1) && 254 + A + -1*B >= 0 && 254 + -1*A + -1*B >= 0 && -1 + B >= 0 && -1 + A + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0 && A >= 0] 10. evalfreturnin(A,B) -> evalfstop(A,B) True (1,1) Signature: {(evalfbb1in,2) ;(evalfbb2in,2) ;(evalfbb3in,2) ;(evalfbbin,2) ;(evalfentryin,2) ;(evalfreturnin,2) ;(evalfstart,2) ;(evalfstop,2)} Flow Graph: [0->{1},1->{2,3,4},2->{5,6,7},3->{10},4->{10},5->{8},6->{8},7->{9},8->{2,4},9->{2,3},10->{}] + Applied Processor: Looptree + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10] | `- p:[2,8,5,6,9,7] c: [] NO