YES * Step 1: TrivialSCCs YES + Considered Problem: Rules: 0. f4(A) -> f5(A) [A >= 0 && 0 >= 1 + B] (?,1) 1. f4(A) -> f5(A) [A >= 0] (?,1) 2. f0(A) -> f4(0) True (1,1) 3. f5(A) -> f11(A) [A >= 0 && A >= 3] (?,1) 4. f4(A) -> f11(A) [A >= 0] (?,1) 5. f5(A) -> f4(1 + A) [A >= 0 && 2 >= A] (?,1) 6. f11(A) -> f14(A) [A >= 0 && 1 >= A] (?,1) 7. f11(A) -> f14(A) [A >= 0 && A >= 2] (?,1) Signature: {(f0,1);(f11,1);(f14,1);(f4,1);(f5,1)} Flow Graph: [0->{3,5},1->{3,5},2->{0,1,4},3->{6,7},4->{6,7},5->{0,1,4},6->{},7->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths YES + Considered Problem: Rules: 0. f4(A) -> f5(A) [A >= 0 && 0 >= 1 + B] (?,1) 1. f4(A) -> f5(A) [A >= 0] (?,1) 2. f0(A) -> f4(0) True (1,1) 3. f5(A) -> f11(A) [A >= 0 && A >= 3] (1,1) 4. f4(A) -> f11(A) [A >= 0] (1,1) 5. f5(A) -> f4(1 + A) [A >= 0 && 2 >= A] (?,1) 6. f11(A) -> f14(A) [A >= 0 && 1 >= A] (1,1) 7. f11(A) -> f14(A) [A >= 0 && A >= 2] (1,1) Signature: {(f0,1);(f11,1);(f14,1);(f4,1);(f5,1)} Flow Graph: [0->{3,5},1->{3,5},2->{0,1,4},3->{6,7},4->{6,7},5->{0,1,4},6->{},7->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,6)] * Step 3: Looptree YES + Considered Problem: Rules: 0. f4(A) -> f5(A) [A >= 0 && 0 >= 1 + B] (?,1) 1. f4(A) -> f5(A) [A >= 0] (?,1) 2. f0(A) -> f4(0) True (1,1) 3. f5(A) -> f11(A) [A >= 0 && A >= 3] (1,1) 4. f4(A) -> f11(A) [A >= 0] (1,1) 5. f5(A) -> f4(1 + A) [A >= 0 && 2 >= A] (?,1) 6. f11(A) -> f14(A) [A >= 0 && 1 >= A] (1,1) 7. f11(A) -> f14(A) [A >= 0 && A >= 2] (1,1) Signature: {(f0,1);(f11,1);(f14,1);(f4,1);(f5,1)} Flow Graph: [0->{3,5},1->{3,5},2->{0,1,4},3->{7},4->{6,7},5->{0,1,4},6->{},7->{}] + Applied Processor: Looptree + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7] | `- p:[0,5,1] c: [5] YES