YES * Step 1: TrivialSCCs YES + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (?,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths YES + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (1,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (1,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,3),(0,4)] * Step 3: Looptree YES + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (1,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (1,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: Looptree + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[1,2] c: [2] | `- p:[1] c: [1] YES