MAYBE * Step 1: TrivialSCCs MAYBE + Considered Problem: Rules: 0. evalEx3start(A,B,C) -> evalEx3entryin(A,B,C) True (1,1) 1. evalEx3entryin(A,B,C) -> evalEx3bb4in(A,B,C) True (?,1) 2. evalEx3bb4in(A,B,C) -> evalEx3bbin(A,B,C) [A >= 1] (?,1) 3. evalEx3bb4in(A,B,C) -> evalEx3returnin(A,B,C) [0 >= A] (?,1) 4. evalEx3bbin(A,B,C) -> evalEx3bb2in(A,D,A) True (?,1) 5. evalEx3bb2in(A,B,C) -> evalEx3bb4in(C,B,C) [0 >= C] (?,1) 6. evalEx3bb2in(A,B,C) -> evalEx3bb3in(A,B,C) [C >= 1] (?,1) 7. evalEx3bb3in(A,B,C) -> evalEx3bb1in(A,B,C) True (?,1) 8. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [B >= 1 + D] (?,1) 9. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [D >= 1 + B] (?,1) 10. evalEx3bb1in(A,B,C) -> evalEx3bb2in(A,B,-1 + C) True (?,1) 11. evalEx3returnin(A,B,C) -> evalEx3stop(A,B,C) True (?,1) Signature: {(evalEx3bb1in,3) ;(evalEx3bb2in,3) ;(evalEx3bb3in,3) ;(evalEx3bb4in,3) ;(evalEx3bbin,3) ;(evalEx3entryin,3) ;(evalEx3returnin,3) ;(evalEx3start,3) ;(evalEx3stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{11},4->{5,6},5->{2,3},6->{7,8,9},7->{10},8->{2,3},9->{2,3},10->{5,6},11->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths MAYBE + Considered Problem: Rules: 0. evalEx3start(A,B,C) -> evalEx3entryin(A,B,C) True (1,1) 1. evalEx3entryin(A,B,C) -> evalEx3bb4in(A,B,C) True (1,1) 2. evalEx3bb4in(A,B,C) -> evalEx3bbin(A,B,C) [A >= 1] (?,1) 3. evalEx3bb4in(A,B,C) -> evalEx3returnin(A,B,C) [0 >= A] (1,1) 4. evalEx3bbin(A,B,C) -> evalEx3bb2in(A,D,A) True (?,1) 5. evalEx3bb2in(A,B,C) -> evalEx3bb4in(C,B,C) [0 >= C] (?,1) 6. evalEx3bb2in(A,B,C) -> evalEx3bb3in(A,B,C) [C >= 1] (?,1) 7. evalEx3bb3in(A,B,C) -> evalEx3bb1in(A,B,C) True (?,1) 8. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [B >= 1 + D] (?,1) 9. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [D >= 1 + B] (?,1) 10. evalEx3bb1in(A,B,C) -> evalEx3bb2in(A,B,-1 + C) True (?,1) 11. evalEx3returnin(A,B,C) -> evalEx3stop(A,B,C) True (1,1) Signature: {(evalEx3bb1in,3) ;(evalEx3bb2in,3) ;(evalEx3bb3in,3) ;(evalEx3bb4in,3) ;(evalEx3bbin,3) ;(evalEx3entryin,3) ;(evalEx3returnin,3) ;(evalEx3start,3) ;(evalEx3stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{11},4->{5,6},5->{2,3},6->{7,8,9},7->{10},8->{2,3},9->{2,3},10->{5,6},11->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,2)] * Step 3: AddSinks MAYBE + Considered Problem: Rules: 0. evalEx3start(A,B,C) -> evalEx3entryin(A,B,C) True (1,1) 1. evalEx3entryin(A,B,C) -> evalEx3bb4in(A,B,C) True (1,1) 2. evalEx3bb4in(A,B,C) -> evalEx3bbin(A,B,C) [A >= 1] (?,1) 3. evalEx3bb4in(A,B,C) -> evalEx3returnin(A,B,C) [0 >= A] (1,1) 4. evalEx3bbin(A,B,C) -> evalEx3bb2in(A,D,A) True (?,1) 5. evalEx3bb2in(A,B,C) -> evalEx3bb4in(C,B,C) [0 >= C] (?,1) 6. evalEx3bb2in(A,B,C) -> evalEx3bb3in(A,B,C) [C >= 1] (?,1) 7. evalEx3bb3in(A,B,C) -> evalEx3bb1in(A,B,C) True (?,1) 8. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [B >= 1 + D] (?,1) 9. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [D >= 1 + B] (?,1) 10. evalEx3bb1in(A,B,C) -> evalEx3bb2in(A,B,-1 + C) True (?,1) 11. evalEx3returnin(A,B,C) -> evalEx3stop(A,B,C) True (1,1) Signature: {(evalEx3bb1in,3) ;(evalEx3bb2in,3) ;(evalEx3bb3in,3) ;(evalEx3bb4in,3) ;(evalEx3bbin,3) ;(evalEx3entryin,3) ;(evalEx3returnin,3) ;(evalEx3start,3) ;(evalEx3stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{11},4->{5,6},5->{3},6->{7,8,9},7->{10},8->{2,3},9->{2,3},10->{5,6},11->{}] + Applied Processor: AddSinks + Details: () * Step 4: UnsatPaths MAYBE + Considered Problem: Rules: 0. evalEx3start(A,B,C) -> evalEx3entryin(A,B,C) True (1,1) 1. evalEx3entryin(A,B,C) -> evalEx3bb4in(A,B,C) True (?,1) 2. evalEx3bb4in(A,B,C) -> evalEx3bbin(A,B,C) [A >= 1] (?,1) 3. evalEx3bb4in(A,B,C) -> evalEx3returnin(A,B,C) [0 >= A] (?,1) 4. evalEx3bbin(A,B,C) -> evalEx3bb2in(A,D,A) True (?,1) 5. evalEx3bb2in(A,B,C) -> evalEx3bb4in(C,B,C) [0 >= C] (?,1) 6. evalEx3bb2in(A,B,C) -> evalEx3bb3in(A,B,C) [C >= 1] (?,1) 7. evalEx3bb3in(A,B,C) -> evalEx3bb1in(A,B,C) True (?,1) 8. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [B >= 1 + D] (?,1) 9. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [D >= 1 + B] (?,1) 10. evalEx3bb1in(A,B,C) -> evalEx3bb2in(A,B,-1 + C) True (?,1) 11. evalEx3returnin(A,B,C) -> evalEx3stop(A,B,C) True (?,1) 12. evalEx3returnin(A,B,C) -> exitus616(A,B,C) True (?,1) Signature: {(evalEx3bb1in,3) ;(evalEx3bb2in,3) ;(evalEx3bb3in,3) ;(evalEx3bb4in,3) ;(evalEx3bbin,3) ;(evalEx3entryin,3) ;(evalEx3returnin,3) ;(evalEx3start,3) ;(evalEx3stop,3) ;(exitus616,3)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{11,12},4->{5,6},5->{2,3},6->{7,8,9},7->{10},8->{2,3},9->{2,3},10->{5,6},11->{} ,12->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,2)] * Step 5: Failure MAYBE + Considered Problem: Rules: 0. evalEx3start(A,B,C) -> evalEx3entryin(A,B,C) True (1,1) 1. evalEx3entryin(A,B,C) -> evalEx3bb4in(A,B,C) True (?,1) 2. evalEx3bb4in(A,B,C) -> evalEx3bbin(A,B,C) [A >= 1] (?,1) 3. evalEx3bb4in(A,B,C) -> evalEx3returnin(A,B,C) [0 >= A] (?,1) 4. evalEx3bbin(A,B,C) -> evalEx3bb2in(A,D,A) True (?,1) 5. evalEx3bb2in(A,B,C) -> evalEx3bb4in(C,B,C) [0 >= C] (?,1) 6. evalEx3bb2in(A,B,C) -> evalEx3bb3in(A,B,C) [C >= 1] (?,1) 7. evalEx3bb3in(A,B,C) -> evalEx3bb1in(A,B,C) True (?,1) 8. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [B >= 1 + D] (?,1) 9. evalEx3bb3in(A,B,C) -> evalEx3bb4in(C,B,C) [D >= 1 + B] (?,1) 10. evalEx3bb1in(A,B,C) -> evalEx3bb2in(A,B,-1 + C) True (?,1) 11. evalEx3returnin(A,B,C) -> evalEx3stop(A,B,C) True (?,1) 12. evalEx3returnin(A,B,C) -> exitus616(A,B,C) True (?,1) Signature: {(evalEx3bb1in,3) ;(evalEx3bb2in,3) ;(evalEx3bb3in,3) ;(evalEx3bb4in,3) ;(evalEx3bbin,3) ;(evalEx3entryin,3) ;(evalEx3returnin,3) ;(evalEx3start,3) ;(evalEx3stop,3) ;(exitus616,3)} Flow Graph: [0->{1},1->{2,3},2->{4},3->{11,12},4->{5,6},5->{3},6->{7,8,9},7->{10},8->{2,3},9->{2,3},10->{5,6},11->{} ,12->{}] + Applied Processor: LooptreeTransformer + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10,11,12] | `- p:[2,8,6,4,10,7,9] c: [] MAYBE