YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 2: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: AddSinks + Details: () * Step 3: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) 4. eval2(A,B) -> exitus616(A,B) True (?,1) Signature: {(eval1,2);(eval2,2);(exitus616,2);(start,2)} Flow Graph: [0->{1,2,4},1->{1,2,4},2->{0},3->{0},4->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 4: LooptreeTransformer WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) 4. eval2(A,B) -> exitus616(A,B) True (?,1) Signature: {(eval1,2);(eval2,2);(exitus616,2);(start,2)} Flow Graph: [0->{1,4},1->{1,2,4},2->{},3->{0},4->{}] + Applied Processor: LooptreeTransformer + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1] * Step 5: SizeAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) 4. eval2(A,B) -> exitus616(A,B) True (?,1) Signature: {(eval1,2);(eval2,2);(exitus616,2);(start,2)} Flow Graph: [0->{1,4},1->{1,2,4},2->{},3->{0},4->{}] ,We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1]) + Applied Processor: SizeAbstraction UseCFG Minimize + Details: () * Step 6: FlowAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,0.0] eval1 ~> eval2 [A <= A, B <= B] eval2 ~> eval2 [A <= A, B <= K + B] eval2 ~> eval1 [A <= A, B <= B] start ~> eval1 [A <= A, B <= B] eval2 ~> exitus616 [A <= A, B <= B] + Loop: [0.0 <= A] eval2 ~> eval2 [A <= A, B <= K + B] + Applied Processor: FlowAbstraction + Details: () * Step 7: LareProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,0.0] eval1 ~> eval2 [] eval2 ~> eval2 [B ~+> B,K ~+> B] eval2 ~> eval1 [] start ~> eval1 [] eval2 ~> exitus616 [] + Loop: [A ~=> 0.0] eval2 ~> eval2 [B ~+> B,K ~+> B] + Applied Processor: LareProcessor + Details: start ~> exitus616 [A ~=> 0.0,A ~+> tick,B ~+> B,tick ~+> tick,K ~+> B,A ~*> B,K ~*> B] + eval2> [A ~=> 0.0,A ~+> tick,B ~+> B,tick ~+> tick,K ~+> B,A ~*> B,K ~*> B] YES(?,O(n^1))