YES(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1] (?,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && 0 >= A && B >= 1] (?,1) 2. eval(A,B) -> eval(A,B) [A + B >= 1 && 0 >= A && 0 >= B] (?,1) 3. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2},1->{0,1,2},2->{0,1,2},3->{0,1,2}] + Applied Processor: UnsatRules + Details: Following transitions have unsatisfiable constraints and are removed: [2] * Step 2: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1] (?,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && 0 >= A && B >= 1] (?,1) 3. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{0,1},3->{0,1}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,0)] * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1] (?,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && 0 >= A && B >= 1] (?,1) 3. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{1},3->{0,1}] + Applied Processor: AddSinks + Details: () * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1] (?,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && 0 >= A && B >= 1] (?,1) 3. start(A,B) -> eval(A,B) True (1,1) 4. eval(A,B) -> exitus616(A,B) True (?,1) Signature: {(eval,2);(exitus616,2);(start,2)} Flow Graph: [0->{0,1,4},1->{0,1,4},3->{0,1,4},4->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,0)] * Step 5: LooptreeTransformer WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1] (?,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && 0 >= A && B >= 1] (?,1) 3. start(A,B) -> eval(A,B) True (1,1) 4. eval(A,B) -> exitus616(A,B) True (?,1) Signature: {(eval,2);(exitus616,2);(start,2)} Flow Graph: [0->{0,1,4},1->{1,4},3->{0,1,4},4->{}] + Applied Processor: LooptreeTransformer + Details: We construct a looptree: P: [0,1,3,4] | +- p:[0] c: [0] | `- p:[1] c: [1] * Step 6: SizeAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: 0. eval(A,B) -> eval(-1 + A,B) [A + B >= 1 && A >= 1] (?,1) 1. eval(A,B) -> eval(A,-1 + B) [A + B >= 1 && 0 >= A && B >= 1] (?,1) 3. start(A,B) -> eval(A,B) True (1,1) 4. eval(A,B) -> exitus616(A,B) True (?,1) Signature: {(eval,2);(exitus616,2);(start,2)} Flow Graph: [0->{0,1,4},1->{1,4},3->{0,1,4},4->{}] ,We construct a looptree: P: [0,1,3,4] | +- p:[0] c: [0] | `- p:[1] c: [1]) + Applied Processor: SizeAbstraction UseCFG Minimize + Details: () * Step 7: FlowAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,0.0,0.1] eval ~> eval [A <= A, B <= B] eval ~> eval [A <= A, B <= B] start ~> eval [A <= A, B <= B] eval ~> exitus616 [A <= A, B <= B] + Loop: [0.0 <= A] eval ~> eval [A <= A, B <= B] + Loop: [0.1 <= B] eval ~> eval [A <= A, B <= B] + Applied Processor: FlowAbstraction + Details: () * Step 8: LareProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,0.0,0.1] eval ~> eval [] eval ~> eval [] start ~> eval [] eval ~> exitus616 [] + Loop: [A ~=> 0.0] eval ~> eval [] + Loop: [B ~=> 0.1] eval ~> eval [] + Applied Processor: LareProcessor + Details: start ~> exitus616 [A ~=> 0.0,B ~=> 0.1,A ~+> tick,B ~+> tick,tick ~+> tick] + eval> [A ~=> 0.0,A ~+> tick,tick ~+> tick] + eval> [B ~=> 0.1,B ~+> tick,tick ~+> tick] YES(?,O(n^1))