YES(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (1,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (1,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,2)] * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (1,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (1,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3},1->{},2->{},3->{1,3}] + Applied Processor: AddSinks + Details: () * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 4. f300(A,B,C) -> exitus616(A,B,C) True (?,1) Signature: {(exitus616,3);(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3,4},1->{},2->{},3->{1,2,3,4},4->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,2)] * Step 5: LooptreeTransformer WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 4. f300(A,B,C) -> exitus616(A,B,C) True (?,1) Signature: {(exitus616,3);(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3,4},1->{},2->{},3->{1,3,4},4->{}] + Applied Processor: LooptreeTransformer + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[3] c: [3] * Step 6: SizeAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: 0. f2(A,B,C) -> f300(A,B,C) True (1,1) 1. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 4. f300(A,B,C) -> exitus616(A,B,C) True (?,1) Signature: {(exitus616,3);(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3,4},1->{},2->{},3->{1,3,4},4->{}] ,We construct a looptree: P: [0,1,2,3,4] | `- p:[3] c: [3]) + Applied Processor: SizeAbstraction UseCFG Minimize + Details: () * Step 7: FlowAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,C,0.0] f2 ~> f300 [A <= A, B <= B, C <= C] f300 ~> f1 [A <= A, B <= B, C <= unknown] f300 ~> f1 [A <= A, B <= B, C <= unknown] f300 ~> f300 [A <= A, B <= A, C <= C] f300 ~> exitus616 [A <= A, B <= B, C <= C] + Loop: [0.0 <= A] f300 ~> f300 [A <= A, B <= A, C <= C] + Applied Processor: FlowAbstraction + Details: () * Step 8: LareProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,C,0.0] f2 ~> f300 [] f300 ~> f1 [huge ~=> C] f300 ~> f1 [huge ~=> C] f300 ~> f300 [A ~=> B] f300 ~> exitus616 [] + Loop: [A ~=> 0.0] f300 ~> f300 [A ~=> B] + Applied Processor: LareProcessor + Details: f2 ~> exitus616 [A ~=> B,A ~=> 0.0,A ~+> tick,tick ~+> tick] f2 ~> f1 [A ~=> B,A ~=> 0.0,huge ~=> C,A ~+> tick,tick ~+> tick] + f300> [A ~=> B,A ~=> 0.0,A ~+> tick,tick ~+> tick] YES(?,O(n^1))