YES(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (?,1) 3. div(A,B) -> end(A,B) [0 >= A] (?,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2,3},2->{},3->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (1,1) 3. div(A,B) -> end(A,B) [0 >= A] (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2,3},2->{},3->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3)] * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (1,1) 3. div(A,B) -> end(A,B) [0 >= A] (1,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2},2->{},3->{}] + Applied Processor: AddSinks + Details: () * Step 4: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (?,1) 3. div(A,B) -> end(A,B) [0 >= A] (?,1) 4. div(A,B) -> exitus616(A,B) True (?,1) Signature: {(div,2);(end,2);(exitus616,2);(start,2)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{},3->{},4->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3)] * Step 5: LooptreeTransformer WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (?,1) 3. div(A,B) -> end(A,B) [0 >= A] (?,1) 4. div(A,B) -> exitus616(A,B) True (?,1) Signature: {(div,2);(end,2);(exitus616,2);(start,2)} Flow Graph: [0->{1,2,3,4},1->{1,2,4},2->{},3->{},4->{}] + Applied Processor: LooptreeTransformer + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1] * Step 6: SizeAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (?,1) 3. div(A,B) -> end(A,B) [0 >= A] (?,1) 4. div(A,B) -> exitus616(A,B) True (?,1) Signature: {(div,2);(end,2);(exitus616,2);(start,2)} Flow Graph: [0->{1,2,3,4},1->{1,2,4},2->{},3->{},4->{}] ,We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1]) + Applied Processor: SizeAbstraction UseCFG Minimize + Details: () * Step 7: FlowAbstraction WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,0.0] start ~> div [A <= A, B <= B] div ~> div [A <= A, B <= B] div ~> end [A <= A, B <= B] div ~> end [A <= A, B <= B] div ~> exitus616 [A <= A, B <= B] + Loop: [0.0 <= A + B] div ~> div [A <= A, B <= B] + Applied Processor: FlowAbstraction + Details: () * Step 8: LareProcessor WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,0.0] start ~> div [] div ~> div [] div ~> end [] div ~> end [] div ~> exitus616 [] + Loop: [A ~+> 0.0,B ~+> 0.0] div ~> div [] + Applied Processor: LareProcessor + Details: start ~> exitus616 [A ~+> 0.0,A ~+> tick,B ~+> 0.0,B ~+> tick,tick ~+> tick] start ~> end [A ~+> 0.0,A ~+> tick,B ~+> 0.0,B ~+> tick,tick ~+> tick] +
div> [A ~+> 0.0,A ~+> tick,B ~+> 0.0,B ~+> tick,tick ~+> tick] YES(?,O(n^1))