MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalrsdstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdentryin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalrsdbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, 2*Ar_0, 2*Ar_0)) (Comp: ?, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: ?, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb3in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalrsdbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1, Ar_2 - 1)) (Comp: ?, Cost: 1) evalrsdbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1 - 1, Ar_1 - 1)) (Comp: ?, Cost: 1) evalrsdreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalrsdstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 ] (Comp: 1, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalrsdbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, 2*Ar_0, 2*Ar_0)) (Comp: ?, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: ?, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb3in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalrsdbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1, Ar_2 - 1)) (Comp: ?, Cost: 1) evalrsdbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1 - 1, Ar_1 - 1)) (Comp: ?, Cost: 1) evalrsdreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalrsdstart) = 2 Pol(evalrsdentryin) = 2 Pol(evalrsdbbin) = 2 Pol(evalrsdreturnin) = 1 Pol(evalrsdbb4in) = 2 Pol(evalrsdbb1in) = 2 Pol(evalrsdbb2in) = 2 Pol(evalrsdbb3in) = 2 Pol(evalrsdstop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalrsdreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstop(Ar_0, Ar_1, Ar_2)) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalrsdstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 ] (Comp: 1, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalrsdbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, 2*Ar_0, 2*Ar_0)) (Comp: ?, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 ] (Comp: 2, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb3in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalrsdbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1, Ar_2 - 1)) (Comp: ?, Cost: 1) evalrsdbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1 - 1, Ar_1 - 1)) (Comp: 2, Cost: 1) evalrsdreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalrsdbb1in: X_3 >= 0 /\ X_1 + X_3 >= 0 /\ -X_1 + X_3 >= 0 /\ X_1 >= 0 For symbol evalrsdbb2in: X_3 >= 0 /\ X_1 + X_3 >= 0 /\ -X_1 + X_3 >= 0 /\ X_1 >= 0 For symbol evalrsdbb3in: X_3 >= 0 /\ X_1 + X_3 >= 0 /\ -X_1 + X_3 >= 0 /\ X_1 >= 0 For symbol evalrsdbb4in: X_1 >= 0 For symbol evalrsdbbin: X_1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalrsdreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdstop(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalrsdbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1 - 1, Ar_1 - 1)) [ Ar_2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalrsdbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, Ar_1, Ar_2 - 1)) [ Ar_2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 >= 0 /\ Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 >= 0 /\ Ar_0 >= 0 /\ D >= 1 ] (Comp: ?, Cost: 1) evalrsdbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb2in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 0 /\ Ar_0 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 >= 0 /\ Ar_0 >= 0 /\ 0 >= D + 1 ] (Comp: 2, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalrsdbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 /\ Ar_2 >= Ar_0 ] (Comp: 1, Cost: 1) evalrsdbbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbb4in(Ar_0, 2*Ar_0, 2*Ar_0)) [ Ar_0 >= 0 ] (Comp: 1, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdreturnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalrsdentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdbbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 0 ] (Comp: 1, Cost: 1) evalrsdstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalrsdentryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 3.442 sec (SMT: 3.346 sec)