WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) (Comp: ?, Cost: 1) evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) (Comp: ?, Cost: 1) evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalrandom1dstart) = 2 Pol(evalrandom1dentryin) = 2 Pol(evalrandom1dbb5in) = 2 Pol(evalrandom1dreturnin) = 1 Pol(evalrandom1dbb1in) = 2 Pol(evalrandom1dstop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1)) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 2, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) (Comp: 2, Cost: 1) evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalrandom1dbb5in) = V_1 - V_2 + 2 Pol(evalrandom1dbb1in) = V_1 - V_2 + 1 and size complexities S("koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-0) = Ar_0 S("koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ]", 0-1) = Ar_1 S("evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1))", 0-0) = Ar_0 S("evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1))", 0-1) = ? S("evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1))", 0-0) = Ar_0 S("evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1))", 0-1) = ? S("evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ]", 0-0) = Ar_0 S("evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ]", 0-1) = ? S("evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ]", 0-0) = Ar_0 S("evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ]", 0-1) = ? S("evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ]", 0-0) = Ar_0 S("evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ]", 0-1) = ? S("evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ]", 0-0) = Ar_0 S("evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ]", 0-1) = ? S("evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ]", 0-0) = Ar_0 S("evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ]", 0-1) = Ar_1 S("evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ]", 0-0) = Ar_0 S("evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ]", 0-1) = 1 S("evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1))", 0-0) = Ar_0 S("evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1))", 0-1) = Ar_1 orients the transitions evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ] evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ] evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) weakly and the transition evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ] (Comp: Ar_0 + 3, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 2, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ] (Comp: ?, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) (Comp: 2, Cost: 1) evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalrandom1dstart(Ar_0, Ar_1) -> Com_1(evalrandom1dentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalrandom1dentryin(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ 0 >= Ar_0 ] (Comp: Ar_0 + 3, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb1in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 2, Cost: 1) evalrandom1dbb5in(Ar_0, Ar_1) -> Com_1(evalrandom1dreturnin(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: Ar_0 + 3, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ 0 >= C + 1 ] (Comp: Ar_0 + 3, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) [ C >= 1 ] (Comp: Ar_0 + 3, Cost: 1) evalrandom1dbb1in(Ar_0, Ar_1) -> Com_1(evalrandom1dbb5in(Ar_0, Ar_1 + 1)) (Comp: 2, Cost: 1) evalrandom1dreturnin(Ar_0, Ar_1) -> Com_1(evalrandom1dstop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalrandom1dstart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 4*Ar_0 + 19 Time: 0.639 sec (SMT: 0.621 sec)