MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalcousot9start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9entryin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalcousot9entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Fresh_0, Ar_2, Ar_2)) (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bbin(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_1 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalcousot9bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_0 - 1, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalcousot9bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_2, Ar_1 - 1, Ar_2)) (Comp: ?, Cost: 1) evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalcousot9start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9entryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalcousot9entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Fresh_0, Ar_2, Ar_2)) (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bbin(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_1 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalcousot9bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_0 - 1, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalcousot9bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_2, Ar_1 - 1, Ar_2)) (Comp: ?, Cost: 1) evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalcousot9start) = 2 Pol(evalcousot9entryin) = 2 Pol(evalcousot9bb3in) = 2 Pol(evalcousot9bbin) = 2 Pol(evalcousot9returnin) = 1 Pol(evalcousot9bb1in) = 2 Pol(evalcousot9bb2in) = 2 Pol(evalcousot9stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalcousot9start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9entryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalcousot9entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Fresh_0, Ar_2, Ar_2)) (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bbin(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= 1 ] (Comp: 2, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_1 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalcousot9bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_0 - 1, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalcousot9bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_2, Ar_1 - 1, Ar_2)) (Comp: 2, Cost: 1) evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalcousot9bb1in: X_3 - 1 >= 0 /\ X_2 + X_3 - 2 >= 0 /\ -X_2 + X_3 >= 0 /\ X_1 + X_3 - 2 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 2 >= 0 /\ X_1 - 1 >= 0 For symbol evalcousot9bb2in: X_3 - 1 >= 0 /\ X_2 + X_3 - 2 >= 0 /\ -X_2 + X_3 >= 0 /\ -X_1 + X_3 - 1 >= 0 /\ X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ -X_1 >= 0 For symbol evalcousot9bb3in: -X_2 + X_3 >= 0 For symbol evalcousot9bbin: X_3 - 1 >= 0 /\ X_2 + X_3 - 2 >= 0 /\ -X_2 + X_3 >= 0 /\ X_2 - 1 >= 0 For symbol evalcousot9returnin: -X_2 + X_3 >= 0 /\ -X_2 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ -Ar_1 >= 0 ] (Comp: ?, Cost: 1) evalcousot9bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_2, Ar_1 - 1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalcousot9bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 >= 1 ] (Comp: 2, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bbin(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ Ar_1 >= 1 ] (Comp: 1, Cost: 1) evalcousot9entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Fresh_0, Ar_2, Ar_2)) (Comp: 1, Cost: 1) evalcousot9start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 4*V_3 - 3 Pol(evalcousot9start) = 4*V_3 - 3 Pol(evalcousot9returnin) = 4*V_2 - 3 Pol(evalcousot9stop) = 4*V_2 - 3 Pol(evalcousot9bb2in) = 4*V_2 - 6 Pol(evalcousot9bb3in) = 4*V_2 - 3 Pol(evalcousot9bb1in) = 4*V_2 - 3 Pol(evalcousot9bbin) = 4*V_2 - 3 Pol(evalcousot9entryin) = 4*V_3 - 3 orients all transitions weakly and the transition evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ 0 >= Ar_0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ -Ar_1 >= 0 ] (Comp: ?, Cost: 1) evalcousot9bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_2, Ar_1 - 1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalcousot9bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: 4*Ar_2 + 3, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 >= 1 ] (Comp: 2, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bbin(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ Ar_1 >= 1 ] (Comp: 1, Cost: 1) evalcousot9entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Fresh_0, Ar_2, Ar_2)) (Comp: 1, Cost: 1) evalcousot9start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 5 produces the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalcousot9returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9stop(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ -Ar_1 >= 0 ] (Comp: 4*Ar_2 + 3, Cost: 1) evalcousot9bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_2, Ar_1 - 1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ -Ar_0 + Ar_2 - 1 >= 0 /\ Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalcousot9bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Ar_0 - 1, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: 4*Ar_2 + 3, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb2in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalcousot9bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 2 >= 0 /\ -Ar_1 + Ar_2 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 >= 1 ] (Comp: 2, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9returnin(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) evalcousot9bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bbin(Ar_0, Ar_1, Ar_2)) [ -Ar_1 + Ar_2 >= 0 /\ Ar_1 >= 1 ] (Comp: 1, Cost: 1) evalcousot9entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9bb3in(Fresh_0, Ar_2, Ar_2)) (Comp: 1, Cost: 1) evalcousot9start(Ar_0, Ar_1, Ar_2) -> Com_1(evalcousot9entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 1.801 sec (SMT: 1.727 sec)