WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalSequentialSinglestart) = 1 Pol(evalSequentialSingleentryin) = 1 Pol(evalSequentialSinglebb1in) = 1 Pol(evalSequentialSinglebb5in) = 0 Pol(evalSequentialSinglebb2in) = 1 Pol(evalSequentialSinglebbin) = 1 Pol(evalSequentialSinglebb4in) = 0 Pol(evalSequentialSinglereturnin) = -1 Pol(evalSequentialSinglestop) = -2 Pol(koat_start) = 1 orients all transitions weakly and the transition evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalSequentialSinglestart) = 3 Pol(evalSequentialSingleentryin) = 3 Pol(evalSequentialSinglebb1in) = 3 Pol(evalSequentialSinglebb5in) = 2 Pol(evalSequentialSinglebb2in) = 3 Pol(evalSequentialSinglebbin) = 3 Pol(evalSequentialSinglebb4in) = 2 Pol(evalSequentialSinglereturnin) = 1 Pol(evalSequentialSinglestop) = 0 Pol(koat_start) = 3 orients all transitions weakly and the transitions evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalSequentialSinglestart) = 3*V_2 + 1 Pol(evalSequentialSingleentryin) = 3*V_2 + 1 Pol(evalSequentialSinglebb1in) = -3*V_1 + 3*V_2 + 1 Pol(evalSequentialSinglebb5in) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglebb2in) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglebbin) = -3*V_1 + 3*V_2 - 1 Pol(evalSequentialSinglebb4in) = -3*V_1 + 3*V_2 - 1 Pol(evalSequentialSinglereturnin) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglestop) = -3*V_1 + 3*V_2 Pol(koat_start) = 3*V_2 + 1 orients all transitions weakly and the transition evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 5 produces the following problem: 6: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalSequentialSinglestart) = 3*V_2 + 1 Pol(evalSequentialSingleentryin) = 3*V_2 + 1 Pol(evalSequentialSinglebb1in) = -3*V_1 + 3*V_2 + 1 Pol(evalSequentialSinglebb5in) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglebb2in) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglebbin) = -3*V_1 + 3*V_2 - 1 Pol(evalSequentialSinglebb4in) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglereturnin) = -3*V_1 + 3*V_2 Pol(evalSequentialSinglestop) = -3*V_1 + 3*V_2 Pol(koat_start) = 3*V_2 + 1 orients all transitions weakly and the transition evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: ?, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: ?, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (Comp: 1, Cost: 1) evalSequentialSinglestart(Ar_0, Ar_1) -> Com_1(evalSequentialSingleentryin(Ar_0, Ar_1)) (Comp: 1, Cost: 1) evalSequentialSingleentryin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(0, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb1in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb2in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ 0 >= C + 1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebbin(Ar_0, Ar_1)) [ C >= 1 ] (Comp: 1, Cost: 1) evalSequentialSinglebb2in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0, Ar_1)) (Comp: 6*Ar_1 + 2, Cost: 1) evalSequentialSinglebbin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb1in(Ar_0 + 1, Ar_1)) (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb4in(Ar_0, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 3, Cost: 1) evalSequentialSinglebb5in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglereturnin(Ar_0, Ar_1)) [ Ar_0 >= Ar_1 ] (Comp: 3*Ar_1 + 1, Cost: 1) evalSequentialSinglebb4in(Ar_0, Ar_1) -> Com_1(evalSequentialSinglebb5in(Ar_0 + 1, Ar_1)) (Comp: 3, Cost: 1) evalSequentialSinglereturnin(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestop(Ar_0, Ar_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(evalSequentialSinglestart(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 21*Ar_1 + 19 Time: 0.766 sec (SMT: 0.734 sec)