WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_2 ] (Comp: ?, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_2 ] (Comp: ?, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: ?, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalDis1start) = 2 Pol(evalDis1entryin) = 2 Pol(evalDis1bb3in) = 2 Pol(evalDis1bbin) = 2 Pol(evalDis1returnin) = 1 Pol(evalDis1bb1in) = 2 Pol(evalDis1bb2in) = 2 Pol(evalDis1stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_2 ] (Comp: ?, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalDis1start) = -2*V_3 + 2*V_4 + 1 Pol(evalDis1entryin) = -2*V_3 + 2*V_4 + 1 Pol(evalDis1bb3in) = 2*V_3 - 2*V_4 + 1 Pol(evalDis1bbin) = 2*V_3 - 2*V_4 + 1 Pol(evalDis1returnin) = 2*V_3 - 2*V_4 + 1 Pol(evalDis1bb1in) = 2*V_3 - 2*V_4 Pol(evalDis1bb2in) = 2*V_3 - 2*V_4 + 1 Pol(evalDis1stop) = 2*V_3 - 2*V_4 + 1 Pol(koat_start) = -2*V_3 + 2*V_4 + 1 orients all transitions weakly and the transition evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_3 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_2 ] (Comp: ?, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_2 >= Ar_3 + 1 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_3 >= Ar_2 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) (Comp: 2, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 5 to obtain the following invariants: For symbol evalDis1bb1in: X_3 - X_4 - 1 >= 0 /\ X_1 - X_2 - 1 >= 0 For symbol evalDis1bb2in: -X_3 + X_4 >= 0 /\ X_1 - X_2 - 1 >= 0 For symbol evalDis1bbin: X_1 - X_2 - 1 >= 0 For symbol evalDis1returnin: -X_1 + X_2 >= 0 This yielded the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ -Ar_0 + Ar_1 >= 0 ] (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ -Ar_2 + Ar_3 >= 0 /\ Ar_0 - Ar_1 - 1 >= 0 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) [ Ar_2 - Ar_3 - 1 >= 0 /\ Ar_0 - Ar_1 - 1 >= 0 ] (Comp: ?, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_3 >= Ar_2 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_3 + 1 ] (Comp: 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = -2*V_1 + 2*V_2 Pol(evalDis1start) = -2*V_1 + 2*V_2 Pol(evalDis1returnin) = 2*V_1 - 2*V_2 Pol(evalDis1stop) = 2*V_1 - 2*V_2 Pol(evalDis1bb2in) = 2*V_1 - 2*V_2 - 1 Pol(evalDis1bb3in) = 2*V_1 - 2*V_2 Pol(evalDis1bb1in) = 2*V_1 - 2*V_2 Pol(evalDis1bbin) = 2*V_1 - 2*V_2 Pol(evalDis1entryin) = -2*V_1 + 2*V_2 orients all transitions weakly and the transition evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_3 >= Ar_2 ] strictly and produces the following problem: 7: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ -Ar_0 + Ar_1 >= 0 ] (Comp: ?, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ -Ar_2 + Ar_3 >= 0 /\ Ar_0 - Ar_1 - 1 >= 0 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) [ Ar_2 - Ar_3 - 1 >= 0 /\ Ar_0 - Ar_1 - 1 >= 0 ] (Comp: 2*Ar_0 + 2*Ar_1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_3 >= Ar_2 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_3 + 1 ] (Comp: 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: ?, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 7 produces the following problem: 8: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1stop(Ar_0, Ar_1, Ar_2, Ar_3)) [ -Ar_0 + Ar_1 >= 0 ] (Comp: 2*Ar_0 + 2*Ar_1, Cost: 1) evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1 + 1, Ar_2, Ar_3)) [ -Ar_2 + Ar_3 >= 0 /\ Ar_0 - Ar_1 - 1 >= 0 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3 + 1)) [ Ar_2 - Ar_3 - 1 >= 0 /\ Ar_0 - Ar_1 - 1 >= 0 ] (Comp: 2*Ar_0 + 2*Ar_1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb2in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_3 >= Ar_2 ] (Comp: 2*Ar_2 + 2*Ar_3 + 1, Cost: 1) evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb1in(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 - Ar_1 - 1 >= 0 /\ Ar_2 >= Ar_3 + 1 ] (Comp: 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1returnin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_1 >= Ar_0 ] (Comp: 2*Ar_2 + 2*Ar_3 + 2*Ar_0 + 2*Ar_1 + 2, Cost: 1) evalDis1bb3in(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bbin(Ar_0, Ar_1, Ar_2, Ar_3)) [ Ar_0 >= Ar_1 + 1 ] (Comp: 1, Cost: 1) evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1bb3in(Ar_1, Ar_0, Ar_3, Ar_2)) (Comp: 1, Cost: 1) evalDis1start(Ar_0, Ar_1, Ar_2, Ar_3) -> Com_1(evalDis1entryin(Ar_0, Ar_1, Ar_2, Ar_3)) start location: koat_start leaf cost: 0 Complexity upper bound 6*Ar_0 + 6*Ar_1 + 6*Ar_2 + 6*Ar_3 + 10 Time: 1.752 sec (SMT: 1.690 sec)