MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalEx7start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7entryin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx7entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_0 + 1)) [ Ar_0 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7returnin(Ar_0, Ar_1, Ar_2)) [ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, 0)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx7returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalEx7start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7entryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx7entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_0 + 1)) [ Ar_0 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7returnin(Ar_0, Ar_1, Ar_2)) [ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, 0)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx7returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalEx7start) = 2 Pol(evalEx7entryin) = 2 Pol(evalEx7bb3in) = 2 Pol(evalEx7bbin) = 2 Pol(evalEx7returnin) = 1 Pol(evalEx7stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalEx7returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7stop(Ar_0, Ar_1, Ar_2)) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7returnin(Ar_0, Ar_1, Ar_2)) [ Ar_2 = Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalEx7start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7entryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx7entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_0 + 1)) [ Ar_0 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_0 + 1 ] (Comp: 2, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7returnin(Ar_0, Ar_1, Ar_2)) [ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, 0)) [ Ar_2 >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_1 >= Ar_2 ] (Comp: 2, Cost: 1) evalEx7returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalEx7bb3in: X_2 - 2 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 - 1 >= 0 For symbol evalEx7bbin: X_2 - 2 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 - 1 >= 0 For symbol evalEx7returnin: X_2 - X_3 - 1 >= 0 /\ X_1 - X_3 >= 0 /\ X_3 - 1 >= 0 /\ X_2 + X_3 - 3 >= 0 /\ X_1 + X_3 - 2 >= 0 /\ -X_1 + X_3 >= 0 /\ X_2 - 2 >= 0 /\ X_1 + X_2 - 3 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ X_1 - 1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalEx7returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7stop(Ar_0, Ar_1, Ar_2)) [ Ar_1 - Ar_2 - 1 >= 0 /\ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_1 + Ar_2 - 3 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ -Ar_0 + Ar_2 >= 0 /\ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 3 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_2 + 1)) [ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 3 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx7bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, 0)) [ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 3 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= Ar_1 + 1 ] (Comp: 2, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7returnin(Ar_0, Ar_1, Ar_2)) [ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 3 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 = Ar_0 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 3 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalEx7bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bbin(Ar_0, Ar_1, Ar_2)) [ Ar_1 - 2 >= 0 /\ Ar_0 + Ar_1 - 3 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_0 >= Ar_2 + 1 ] (Comp: 1, Cost: 1) evalEx7entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7bb3in(Ar_0, Ar_1, Ar_0 + 1)) [ Ar_0 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) evalEx7start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx7entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 1.948 sec (SMT: 1.885 sec)