MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalEx3start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3entryin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalEx3bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Fresh_0, Ar_0)) (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb3in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_1 >= D + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ D >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx3bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Ar_1, Ar_2 - 1)) (Comp: ?, Cost: 1) evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalEx3start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3entryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx3entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalEx3bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Fresh_0, Ar_0)) (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb3in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_1 >= D + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ D >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx3bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Ar_1, Ar_2 - 1)) (Comp: ?, Cost: 1) evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalEx3start) = 2 Pol(evalEx3entryin) = 2 Pol(evalEx3bb4in) = 2 Pol(evalEx3bbin) = 2 Pol(evalEx3returnin) = 1 Pol(evalEx3bb2in) = 2 Pol(evalEx3bb3in) = 2 Pol(evalEx3bb1in) = 2 Pol(evalEx3stop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalEx3start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3entryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx3entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: 2, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalEx3bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Fresh_0, Ar_0)) (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb3in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_1 >= D + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ D >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx3bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Ar_1, Ar_2 - 1)) (Comp: 2, Cost: 1) evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol evalEx3bb1in: X_1 - X_3 >= 0 /\ X_3 - 1 >= 0 /\ X_1 + X_3 - 2 >= 0 /\ X_1 - 1 >= 0 For symbol evalEx3bb2in: X_1 - X_3 >= 0 /\ X_1 - 1 >= 0 For symbol evalEx3bb3in: X_1 - X_3 >= 0 /\ X_3 - 1 >= 0 /\ X_1 + X_3 - 2 >= 0 /\ X_1 - 1 >= 0 For symbol evalEx3bbin: X_1 - 1 >= 0 For symbol evalEx3returnin: -X_1 >= 0 This yielded the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) [ -Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Ar_1, Ar_2 - 1)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 /\ D >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= D + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb3in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_0 - 1 >= 0 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx3bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Fresh_0, Ar_0)) [ Ar_0 - 1 >= 0 ] (Comp: 2, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalEx3entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx3start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 4*V_1 Pol(evalEx3start) = 4*V_1 Pol(evalEx3returnin) = 4*V_1 - 1 Pol(evalEx3stop) = 4*V_1 - 1 Pol(evalEx3bb1in) = 2*V_1 + 2*V_3 - 2 Pol(evalEx3bb2in) = 2*V_1 + 2*V_3 - 1 Pol(evalEx3bb3in) = 2*V_1 + 2*V_3 - 1 Pol(evalEx3bb4in) = 4*V_1 - 1 Pol(evalEx3bbin) = 4*V_1 - 1 Pol(evalEx3entryin) = 4*V_1 orients all transitions weakly and the transition evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) [ -Ar_0 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Ar_1, Ar_2 - 1)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 /\ D >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= D + 1 ] (Comp: 4*Ar_0, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb3in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_0 - 1 >= 0 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx3bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Fresh_0, Ar_0)) [ Ar_0 - 1 >= 0 ] (Comp: 2, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalEx3entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx3start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 5 produces the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3start(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] (Comp: 2, Cost: 1) evalEx3returnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3stop(Ar_0, Ar_1, Ar_2)) [ -Ar_0 >= 0 ] (Comp: 4*Ar_0, Cost: 1) evalEx3bb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Ar_1, Ar_2 - 1)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 /\ D >= Ar_1 + 1 ] (Comp: ?, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_1 >= D + 1 ] (Comp: 4*Ar_0, Cost: 1) evalEx3bb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb1in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_2 - 1 >= 0 /\ Ar_0 + Ar_2 - 2 >= 0 /\ Ar_0 - 1 >= 0 ] (Comp: ?, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb3in(Ar_0, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_0 - 1 >= 0 /\ Ar_2 >= 1 ] (Comp: 4*Ar_0, Cost: 1) evalEx3bb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_2, Ar_1, Ar_2)) [ Ar_0 - Ar_2 >= 0 /\ Ar_0 - 1 >= 0 /\ 0 >= Ar_2 ] (Comp: ?, Cost: 1) evalEx3bbin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb2in(Ar_0, Fresh_0, Ar_0)) [ Ar_0 - 1 >= 0 ] (Comp: 2, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3returnin(Ar_0, Ar_1, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) evalEx3bb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bbin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) evalEx3entryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3bb4in(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalEx3start(Ar_0, Ar_1, Ar_2) -> Com_1(evalEx3entryin(Ar_0, Ar_1, Ar_2)) start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 2.077 sec (SMT: 1.996 sec)