WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfstart) = 2 Pol(evalfentryin) = 2 Pol(evalfbb5in) = 2 Pol(evalfreturnin) = 1 Pol(evalfbb6in) = 2 Pol(evalfbb2in) = 2 Pol(evalfbb4in) = 2 Pol(evalfbb3in) = 2 Pol(evalfbb1in) = 2 Pol(evalfstop) = 0 Pol(koat_start) = 2 orients all transitions weakly and the transitions evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfstart) = 5*V_2 + 2 Pol(evalfentryin) = 5*V_2 + 2 Pol(evalfbb5in) = -5*V_1 + 5*V_2 + 2 Pol(evalfreturnin) = -5*V_1 + 5*V_2 + 1 Pol(evalfbb6in) = -5*V_1 + 5*V_2 + 1 Pol(evalfbb2in) = 5*V_2 - 5*V_3 Pol(evalfbb4in) = 5*V_2 - 5*V_3 - 2 Pol(evalfbb3in) = 5*V_2 - 5*V_3 - 1 Pol(evalfbb1in) = 5*V_2 - 5*V_3 - 2 Pol(evalfstop) = -5*V_1 + 5*V_2 + 1 Pol(koat_start) = 5*V_2 + 2 orients all transitions weakly and the transition evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: ?, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 4 produces the following problem: 5: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: 10*Ar_1 + 4, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(evalfstart) = 2*V_2 + 1 Pol(evalfentryin) = 2*V_2 + 1 Pol(evalfbb5in) = -2*V_1 + 2*V_2 + 1 Pol(evalfreturnin) = -2*V_1 + 2*V_2 Pol(evalfbb6in) = -2*V_1 + 2*V_2 Pol(evalfbb2in) = 2*V_2 - 2*V_3 Pol(evalfbb4in) = 2*V_2 - 2*V_3 - 1 Pol(evalfbb3in) = 2*V_2 - 2*V_3 Pol(evalfbb1in) = 2*V_2 - 2*V_3 - 2 Pol(evalfstop) = -2*V_1 + 2*V_2 Pol(koat_start) = 2*V_2 + 1 orients all transitions weakly and the transition evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: 2*Ar_1 + 1, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: ?, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: ?, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: 10*Ar_1 + 4, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: ?, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 6 produces the following problem: 7: T: (Comp: 1, Cost: 1) evalfstart(Ar_0, Ar_1, Ar_2) -> Com_1(evalfentryin(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 1) evalfentryin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(0, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) [ Ar_0 >= Ar_1 ] (Comp: 2*Ar_1 + 1, Cost: 1) evalfbb5in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb6in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 2*Ar_1 + 1, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ 0 >= D + 1 ] (Comp: 2*Ar_1 + 1, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_0)) [ D >= 1 ] (Comp: 2, Cost: 1) evalfbb6in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfreturnin(Ar_0, Ar_1, Ar_2)) (Comp: 14*Ar_1 + 6, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) [ Ar_2 >= Ar_1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb2in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb3in(Ar_0, Ar_1, Ar_2)) [ Ar_1 >= Ar_2 + 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ 0 >= D + 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb1in(Ar_0, Ar_1, Ar_2)) [ D >= 1 ] (Comp: 5*Ar_1 + 2, Cost: 1) evalfbb3in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb4in(Ar_0, Ar_1, Ar_2)) (Comp: 10*Ar_1 + 4, Cost: 1) evalfbb1in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb2in(Ar_0, Ar_1, Ar_2 + 1)) (Comp: 19*Ar_1 + 8, Cost: 1) evalfbb4in(Ar_0, Ar_1, Ar_2) -> Com_1(evalfbb5in(Ar_2 + 1, Ar_1, Ar_2)) (Comp: 2, Cost: 1) evalfreturnin(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstop(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(evalfstart(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 69*Ar_1 + 37 Time: 1.082 sec (SMT: 1.044 sec)