WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = 1 Pol(f300) = 0 Pol(f1) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] strictly and produces the following problem: 3: T: (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = -5*V_1 + 6 Pol(f300) = -5*V_1 + 6 Pol(f1) = -5*V_1 + 6 Pol(koat_start) = -5*V_1 + 6 orients all transitions weakly and the transition f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] strictly and produces the following problem: 4: T: (Comp: 5*Ar_0 + 6, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f2) = -V_2 + 3 Pol(f300) = -V_2 + 3 Pol(f1) = -V_2 + 3 Pol(koat_start) = -V_2 + 3 orients all transitions weakly and the transition f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] strictly and produces the following problem: 5: T: (Comp: 5*Ar_0 + 6, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 1 >= Ar_0 ] (Comp: Ar_1 + 3, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0 + 1, Ar_1 + 1, Ar_2)) [ 2 >= Ar_1 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_1, Ar_2) -> Com_1(f300(Ar_0, Ar_1, Fresh_0)) [ Ar_1 >= 3 /\ Ar_0 >= 2 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, Ar_2)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f1(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound 5*Ar_0 + Ar_1 + 11 Time: 0.704 sec (SMT: 0.680 sec)