MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Ar_0 - 1, Ar_2, Ar_2 - 1, Ar_0, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Ar_0 - 1, Ar_1, Ar_2 - 1, Ar_3, Ar_2, Ar_0, Ar_6)) [ Ar_0 >= 1 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f4(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Fresh_3)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Fresh_2, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ Fresh_2 >= 1 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f2(Fresh_0, Ar_1, Fresh_1, Ar_3, Ar_4, Ar_5, Ar_6)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f3(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_2]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f3(Ar_0, Ar_2)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_2) -> Com_1(f2(Fresh_0, Fresh_1)) (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f0(Fresh_2, Ar_2)) [ Fresh_2 >= 1 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f4(Ar_0, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_2) -> Com_1(f0(Ar_0 - 1, Ar_2 - 1)) [ Ar_0 >= 1 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f0(Ar_0 - 1, Ar_2 - 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f2(Ar_0, Ar_2)) [ 0 >= Ar_0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transition from problem 2: f1(Ar_0, Ar_2) -> Com_1(f0(Ar_0 - 1, Ar_2 - 1)) [ Ar_0 >= 1 /\ Ar_2 >= 1 ] We thus obtain the following problem: 3: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f2(Ar_0, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f0(Ar_0 - 1, Ar_2 - 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f4(Ar_0, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f0(Fresh_2, Ar_2)) [ Fresh_2 >= 1 /\ Ar_2 >= 1 ] (Comp: ?, Cost: 1) f3(Ar_0, Ar_2) -> Com_1(f2(Fresh_0, Fresh_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f3(Ar_0, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 3 produces the following problem: 4: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f2(Ar_0, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f0(Ar_0 - 1, Ar_2 - 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f4(Ar_0, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f0(Fresh_2, Ar_2)) [ Fresh_2 >= 1 /\ Ar_2 >= 1 ] (Comp: 1, Cost: 1) f3(Ar_0, Ar_2) -> Com_1(f2(Fresh_0, Fresh_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f3(Ar_0, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f0) = 1 Pol(f2) = 1 Pol(f4) = 0 Pol(f3) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f2(Ar_0, Ar_2) -> Com_1(f4(Ar_0, Ar_2)) [ 0 >= Ar_2 ] strictly and produces the following problem: 5: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f2(Ar_0, Ar_2)) [ 0 >= Ar_0 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_2) -> Com_1(f0(Ar_0 - 1, Ar_2 - 1)) [ Ar_0 >= 1 ] (Comp: 1, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f4(Ar_0, Ar_2)) [ 0 >= Ar_2 ] (Comp: ?, Cost: 1) f2(Ar_0, Ar_2) -> Com_1(f0(Fresh_2, Ar_2)) [ Fresh_2 >= 1 /\ Ar_2 >= 1 ] (Comp: 1, Cost: 1) f3(Ar_0, Ar_2) -> Com_1(f2(Fresh_0, Fresh_1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_2) -> Com_1(f3(Ar_0, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 0.819 sec (SMT: 0.782 sec)