MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f2(Fresh_11, Ar_1, Fresh_12, Ar_3, Ar_4, Ar_5, Ar_6)) [ Ar_0 >= Ar_1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Fresh_9, Ar_1, Ar_2, Fresh_10, 0, Ar_5, Ar_6)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Fresh_5, Ar_1, Ar_2, Fresh_6, Fresh_7, Fresh_8, Ar_6)) [ 0 >= Fresh_7 + 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Fresh_1, Ar_1, Ar_2, Fresh_2, Fresh_3, Fresh_4, Ar_6)) [ Fresh_3 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Fresh_0)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6) -> Com_1(f1(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5, Ar_6)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_0, Ar_1]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_1, Ar_1)) [ Fresh_3 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_5, Ar_1)) [ 0 >= Fresh_7 + 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_9, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f2(Fresh_11, Ar_1)) [ Ar_0 >= Ar_1 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_1, Ar_1)) [ Fresh_3 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_5, Ar_1)) [ 0 >= Fresh_7 + 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_9, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f2(Fresh_11, Ar_1)) [ Ar_0 >= Ar_1 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 1 Pol(f1) = 1 Pol(f0) = 1 Pol(f2) = 0 orients all transitions weakly and the transition f0(Ar_0, Ar_1) -> Com_1(f2(Fresh_11, Ar_1)) [ Ar_0 >= Ar_1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f1(Ar_0, Ar_1)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f1(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_1, Ar_1)) [ Fresh_3 >= 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_5, Ar_1)) [ 0 >= Fresh_7 + 1 /\ Ar_1 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f0(Fresh_9, Ar_1)) [ Ar_1 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f2(Fresh_11, Ar_1)) [ Ar_0 >= Ar_1 ] start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 0.643 sec (SMT: 0.610 sec)