MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f8(1, 1, 0, 1, 1, Ar_5)) (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f10(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 29 >= Ar_3 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f14(Ar_0, Ar_1, Ar_2, Ar_3, Fresh_0, Ar_5)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f14(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4 + 2, Ar_5)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f10(Ar_0, Ar_1, Ar_2, Ar_3 + 10, Ar_4, Ar_5)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f14(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f10(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4, Ar_5)) [ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f10(Ar_0, Ar_1, Ar_2, Ar_3 + 1, Ar_4, Ar_5)) [ 9 >= Ar_4 ] (Comp: ?, Cost: 1) f10(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f8(Ar_0, Ar_1, Ar_2, Ar_3 + 2, Ar_4 - 10, Ar_5)) [ Ar_4 >= Ar_3 ] (Comp: ?, Cost: 1) f8(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f28(Ar_0, Ar_1, 1, Ar_3, Ar_4, 1)) [ Ar_3 >= 30 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5) -> Com_1(f0(Ar_0, Ar_1, Ar_2, Ar_3, Ar_4, Ar_5)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [Ar_3, Ar_4]. We thus obtain the following problem: 2: T: (Comp: 1, Cost: 0) koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: ?, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ] (Comp: ?, Cost: 1) f0(Ar_3, Ar_4) -> Com_1(f8(1, 1)) start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: 1, Cost: 0) koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ] (Comp: ?, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: ?, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ] (Comp: 1, Cost: 1) f0(Ar_3, Ar_4) -> Com_1(f8(1, 1)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 1 Pol(f0) = 1 Pol(f8) = 1 Pol(f28) = 0 Pol(f10) = 1 Pol(f14) = 1 orients all transitions weakly and the transition f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 0) koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: ?, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ] (Comp: 1, Cost: 1) f0(Ar_3, Ar_4) -> Com_1(f8(1, 1)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(koat_start) = 230 Pol(f0) = 230 Pol(f8) = -8*V_1 + 238 Pol(f28) = -8*V_1 + 238 Pol(f10) = -8*V_1 + 222 Pol(f14) = -8*V_1 + 222 orients all transitions weakly and the transition f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ] strictly and produces the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: 230, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ] (Comp: 1, Cost: 1) f0(Ar_3, Ar_4) -> Com_1(f8(1, 1)) start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f14) = 1 Pol(f10) = 1 Pol(f8) = 0 and size complexities S("f0(Ar_3, Ar_4) -> Com_1(f8(1, 1))", 0-0) = 1 S("f0(Ar_3, Ar_4) -> Com_1(f8(1, 1))", 0-1) = 1 S("f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ]", 0-0) = ? S("f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ]", 0-1) = ? S("f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\\ Ar_4 >= 6 ]", 0-0) = ? S("f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\\ Ar_4 >= 6 ]", 0-1) = ? S("f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\\ 5 >= Ar_4 ]", 0-0) = ? S("f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\\ 5 >= Ar_4 ]", 0-1) = ? S("f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\\ Ar_4 >= 10 ]", 0-0) = ? S("f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\\ Ar_4 >= 10 ]", 0-1) = 12 S("f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ]", 0-0) = ? S("f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ]", 0-1) = ? S("f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ]", 0-0) = ? S("f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ]", 0-1) = ? S("f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ]", 0-0) = ? S("f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ]", 0-1) = ? S("f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ]", 0-0) = ? S("f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ]", 0-1) = ? S("koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ]", 0-0) = Ar_3 S("koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ]", 0-1) = Ar_4 orients the transitions f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ] f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ] f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] weakly and the transition f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] strictly and produces the following problem: 6: T: (Comp: 1, Cost: 0) koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 >= 30 ] (Comp: 230, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_4 >= Ar_3 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ 9 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: 230, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ 29 >= Ar_3 ] (Comp: 1, Cost: 1) f0(Ar_3, Ar_4) -> Com_1(f8(1, 1)) start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 6 to obtain the following invariants: For symbol f10: X_1 - 1 >= 0 For symbol f14: X_1 - 1 >= 0 For symbol f8: X_1 - 1 >= 0 This yielded the following problem: 7: T: (Comp: 1, Cost: 1) f0(Ar_3, Ar_4) -> Com_1(f8(1, 1)) (Comp: 230, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f10(Ar_3, Ar_4)) [ Ar_3 - 1 >= 0 /\ 29 >= Ar_3 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Fresh_0)) [ Ar_3 - 1 >= 0 /\ Ar_3 >= Ar_4 + 1 /\ Ar_4 >= 6 ] (Comp: ?, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f14(Ar_3, Ar_4 + 2)) [ Ar_3 - 1 >= 0 /\ Ar_3 >= Ar_4 + 1 /\ 5 >= Ar_4 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 10, Ar_4)) [ Ar_3 - 1 >= 0 /\ 12 >= Ar_4 /\ Ar_4 >= 10 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_3 - 1 >= 0 /\ Ar_4 >= 13 ] (Comp: ?, Cost: 1) f14(Ar_3, Ar_4) -> Com_1(f10(Ar_3 + 1, Ar_4)) [ Ar_3 - 1 >= 0 /\ 9 >= Ar_4 ] (Comp: 230, Cost: 1) f10(Ar_3, Ar_4) -> Com_1(f8(Ar_3 + 2, Ar_4 - 10)) [ Ar_3 - 1 >= 0 /\ Ar_4 >= Ar_3 ] (Comp: 1, Cost: 1) f8(Ar_3, Ar_4) -> Com_1(f28(Ar_3, Ar_4)) [ Ar_3 - 1 >= 0 /\ Ar_3 >= 30 ] (Comp: 1, Cost: 0) koat_start(Ar_3, Ar_4) -> Com_1(f0(Ar_3, Ar_4)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 2.813 sec (SMT: 2.732 sec)