WORST_CASE(?, O(n^1)) Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f5(Ar_0, Ar_1, 1)) [ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_1 >= 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 0)) [ 0 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 1 produces the following problem: 2: T: (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f5(Ar_0, Ar_1, 1)) [ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_1 >= 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 0)) [ 0 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = 1 Pol(f5) = 0 Pol(f0) = 1 Pol(f2) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2) -> Com_1(f5(Ar_0, Ar_1, 1)) [ 0 >= Ar_0 /\ 0 >= Ar_1 ] strictly and produces the following problem: 3: T: (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f5(Ar_0, Ar_1, 1)) [ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_1 >= 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 0)) [ 0 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f4) = V_2 Pol(f5) = V_2 Pol(f0) = V_2 Pol(f2) = V_2 Pol(koat_start) = V_2 orients all transitions weakly and the transition f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_1 >= 1 ] strictly and produces the following problem: 4: T: (Comp: 1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f5(Ar_0, Ar_1, 1)) [ 0 >= Ar_0 /\ 0 >= Ar_1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f2(Ar_0, Ar_1, 1)) [ Ar_0 >= 1 ] (Comp: Ar_1, Cost: 1) f4(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1 - 1, Ar_2)) [ Ar_1 >= 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1, Ar_2) -> Com_1(f4(Ar_0, Ar_1, 0)) [ 0 >= Ar_0 ] (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1, Ar_2) -> Com_1(f0(Ar_0, Ar_1, Ar_2)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound Ar_1 + 3 Time: 0.499 sec (SMT: 0.485 sec)