MAYBE Initial complexity problem: 1: T: (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_2, Ar_1)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_1, Ar_1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f13(Ar_0, Ar_1) -> Com_1(f13(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f15(Ar_0, Ar_1) -> Com_1(f17(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f13(0, 1)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f7(Fresh_0, 1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Testing for reachability in the complexity graph removes the following transition from problem 1: f15(Ar_0, Ar_1) -> Com_1(f17(Ar_0, Ar_1)) We thus obtain the following problem: 2: T: (Comp: ?, Cost: 1) f13(Ar_0, Ar_1) -> Com_1(f13(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f13(0, 1)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_1, Ar_1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_2, Ar_1)) [ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f7(Fresh_0, 1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Repeatedly propagating knowledge in problem 2 produces the following problem: 3: T: (Comp: ?, Cost: 1) f13(Ar_0, Ar_1) -> Com_1(f13(Ar_0, Ar_1)) (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f13(0, 1)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_1, Ar_1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_2, Ar_1)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f7(Fresh_0, 1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 A polynomial rank function with Pol(f13) = 0 Pol(f7) = 1 Pol(f0) = 1 Pol(koat_start) = 1 orients all transitions weakly and the transition f7(Ar_0, Ar_1) -> Com_1(f13(0, 1)) [ Ar_0 = 0 ] strictly and produces the following problem: 4: T: (Comp: ?, Cost: 1) f13(Ar_0, Ar_1) -> Com_1(f13(Ar_0, Ar_1)) (Comp: 1, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f13(0, 1)) [ Ar_0 = 0 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_1, Ar_1)) [ Ar_0 >= 1 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_2, Ar_1)) [ 0 >= Ar_0 + 1 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f7(Fresh_0, 1)) (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) [ 0 <= 0 ] start location: koat_start leaf cost: 0 Applied AI with 'oct' on problem 4 to obtain the following invariants: For symbol f13: -X_2 + 1 >= 0 /\ X_1 - X_2 + 1 >= 0 /\ -X_1 - X_2 + 1 >= 0 /\ X_2 - 1 >= 0 /\ X_1 + X_2 - 1 >= 0 /\ -X_1 + X_2 - 1 >= 0 /\ -X_1 >= 0 /\ X_1 >= 0 For symbol f7: -X_2 + 1 >= 0 /\ X_2 - 1 >= 0 This yielded the following problem: 5: T: (Comp: 1, Cost: 0) koat_start(Ar_0, Ar_1) -> Com_1(f0(Ar_0, Ar_1)) [ 0 <= 0 ] (Comp: 1, Cost: 1) f0(Ar_0, Ar_1) -> Com_1(f7(Fresh_0, 1)) (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_2, Ar_1)) [ -Ar_1 + 1 >= 0 /\ Ar_1 - 1 >= 0 /\ 0 >= Ar_0 + 1 ] (Comp: ?, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f7(Fresh_1, Ar_1)) [ -Ar_1 + 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 >= 1 ] (Comp: 1, Cost: 1) f7(Ar_0, Ar_1) -> Com_1(f13(0, 1)) [ -Ar_1 + 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 = 0 ] (Comp: ?, Cost: 1) f13(Ar_0, Ar_1) -> Com_1(f13(Ar_0, Ar_1)) [ -Ar_1 + 1 >= 0 /\ Ar_0 - Ar_1 + 1 >= 0 /\ -Ar_0 - Ar_1 + 1 >= 0 /\ Ar_1 - 1 >= 0 /\ Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 + Ar_1 - 1 >= 0 /\ -Ar_0 >= 0 /\ Ar_0 >= 0 ] start location: koat_start leaf cost: 0 Complexity upper bound ? Time: 1.400 sec (SMT: 1.355 sec)