MAYBE * Step 1: UnsatPaths MAYBE + Considered Problem: Rules: 0. evalcousot9start(A,B,C) -> evalcousot9entryin(A,B,C) True (1,1) 1. evalcousot9entryin(A,B,C) -> evalcousot9bb3in(D,C,C) True (?,1) 2. evalcousot9bb3in(A,B,C) -> evalcousot9bbin(A,B,C) [-1*B + C >= 0 && B >= 1] (?,1) 3. evalcousot9bb3in(A,B,C) -> evalcousot9returnin(A,B,C) [-1*B + C >= 0 && 0 >= B] (?,1) 4. evalcousot9bbin(A,B,C) -> evalcousot9bb1in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] (?,1) 5. evalcousot9bbin(A,B,C) -> evalcousot9bb2in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] (?,1) 6. evalcousot9bb1in(A,B,C) -> evalcousot9bb3in(-1 + A,B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] 7. evalcousot9bb2in(A,B,C) -> evalcousot9bb3in(C,-1 + B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] 8. evalcousot9returnin(A,B,C) -> evalcousot9stop(A,B,C) [-1*B + C >= 0 && -1*B >= 0] (?,1) Signature: {(evalcousot9bb1in,3) ;(evalcousot9bb2in,3) ;(evalcousot9bb3in,3) ;(evalcousot9bbin,3) ;(evalcousot9entryin,3) ;(evalcousot9returnin,3) ;(evalcousot9start,3) ;(evalcousot9stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2,3},7->{2,3},8->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(6,3)] * Step 2: TrivialSCCs MAYBE + Considered Problem: Rules: 0. evalcousot9start(A,B,C) -> evalcousot9entryin(A,B,C) True (1,1) 1. evalcousot9entryin(A,B,C) -> evalcousot9bb3in(D,C,C) True (?,1) 2. evalcousot9bb3in(A,B,C) -> evalcousot9bbin(A,B,C) [-1*B + C >= 0 && B >= 1] (?,1) 3. evalcousot9bb3in(A,B,C) -> evalcousot9returnin(A,B,C) [-1*B + C >= 0 && 0 >= B] (?,1) 4. evalcousot9bbin(A,B,C) -> evalcousot9bb1in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] (?,1) 5. evalcousot9bbin(A,B,C) -> evalcousot9bb2in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] (?,1) 6. evalcousot9bb1in(A,B,C) -> evalcousot9bb3in(-1 + A,B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] 7. evalcousot9bb2in(A,B,C) -> evalcousot9bb3in(C,-1 + B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] 8. evalcousot9returnin(A,B,C) -> evalcousot9stop(A,B,C) [-1*B + C >= 0 && -1*B >= 0] (?,1) Signature: {(evalcousot9bb1in,3) ;(evalcousot9bb2in,3) ;(evalcousot9bb3in,3) ;(evalcousot9bbin,3) ;(evalcousot9entryin,3) ;(evalcousot9returnin,3) ;(evalcousot9start,3) ;(evalcousot9stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank MAYBE + Considered Problem: Rules: 0. evalcousot9start(A,B,C) -> evalcousot9entryin(A,B,C) True (1,1) 1. evalcousot9entryin(A,B,C) -> evalcousot9bb3in(D,C,C) True (1,1) 2. evalcousot9bb3in(A,B,C) -> evalcousot9bbin(A,B,C) [-1*B + C >= 0 && B >= 1] (?,1) 3. evalcousot9bb3in(A,B,C) -> evalcousot9returnin(A,B,C) [-1*B + C >= 0 && 0 >= B] (1,1) 4. evalcousot9bbin(A,B,C) -> evalcousot9bb1in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] (?,1) 5. evalcousot9bbin(A,B,C) -> evalcousot9bb2in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] (?,1) 6. evalcousot9bb1in(A,B,C) -> evalcousot9bb3in(-1 + A,B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] 7. evalcousot9bb2in(A,B,C) -> evalcousot9bb3in(C,-1 + B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] 8. evalcousot9returnin(A,B,C) -> evalcousot9stop(A,B,C) [-1*B + C >= 0 && -1*B >= 0] (1,1) Signature: {(evalcousot9bb1in,3) ;(evalcousot9bb2in,3) ;(evalcousot9bb3in,3) ;(evalcousot9bbin,3) ;(evalcousot9entryin,3) ;(evalcousot9returnin,3) ;(evalcousot9start,3) ;(evalcousot9stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalcousot9bb1in) = x2 p(evalcousot9bb2in) = x2 p(evalcousot9bb3in) = x2 p(evalcousot9bbin) = x2 p(evalcousot9entryin) = x3 p(evalcousot9returnin) = x2 p(evalcousot9start) = x3 p(evalcousot9stop) = x2 Following rules are strictly oriented: [-1 + C >= 0 ==> && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] evalcousot9bb2in(A,B,C) = B > -1 + B = evalcousot9bb3in(C,-1 + B,C) Following rules are weakly oriented: True ==> evalcousot9start(A,B,C) = C >= C = evalcousot9entryin(A,B,C) True ==> evalcousot9entryin(A,B,C) = C >= C = evalcousot9bb3in(D,C,C) [-1*B + C >= 0 && B >= 1] ==> evalcousot9bb3in(A,B,C) = B >= B = evalcousot9bbin(A,B,C) [-1*B + C >= 0 && 0 >= B] ==> evalcousot9bb3in(A,B,C) = B >= B = evalcousot9returnin(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] ==> evalcousot9bbin(A,B,C) = B >= B = evalcousot9bb1in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] ==> evalcousot9bbin(A,B,C) = B >= B = evalcousot9bb2in(A,B,C) [-1 + C >= 0 ==> && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] evalcousot9bb1in(A,B,C) = B >= B = evalcousot9bb3in(-1 + A,B,C) [-1*B + C >= 0 && -1*B >= 0] ==> evalcousot9returnin(A,B,C) = B >= B = evalcousot9stop(A,B,C) * Step 4: PolyRank MAYBE + Considered Problem: Rules: 0. evalcousot9start(A,B,C) -> evalcousot9entryin(A,B,C) True (1,1) 1. evalcousot9entryin(A,B,C) -> evalcousot9bb3in(D,C,C) True (1,1) 2. evalcousot9bb3in(A,B,C) -> evalcousot9bbin(A,B,C) [-1*B + C >= 0 && B >= 1] (?,1) 3. evalcousot9bb3in(A,B,C) -> evalcousot9returnin(A,B,C) [-1*B + C >= 0 && 0 >= B] (1,1) 4. evalcousot9bbin(A,B,C) -> evalcousot9bb1in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] (?,1) 5. evalcousot9bbin(A,B,C) -> evalcousot9bb2in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] (?,1) 6. evalcousot9bb1in(A,B,C) -> evalcousot9bb3in(-1 + A,B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] 7. evalcousot9bb2in(A,B,C) -> evalcousot9bb3in(C,-1 + B,C) [-1 + C >= 0 (C,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] 8. evalcousot9returnin(A,B,C) -> evalcousot9stop(A,B,C) [-1*B + C >= 0 && -1*B >= 0] (1,1) Signature: {(evalcousot9bb1in,3) ;(evalcousot9bb2in,3) ;(evalcousot9bb3in,3) ;(evalcousot9bbin,3) ;(evalcousot9entryin,3) ;(evalcousot9returnin,3) ;(evalcousot9start,3) ;(evalcousot9stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(evalcousot9bb1in) = x2 p(evalcousot9bb2in) = -1 + x2 p(evalcousot9bb3in) = x2 p(evalcousot9bbin) = x2 p(evalcousot9entryin) = x3 p(evalcousot9returnin) = x2 p(evalcousot9start) = 1 + x3 p(evalcousot9stop) = x2 Following rules are strictly oriented: [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] ==> evalcousot9bbin(A,B,C) = B > -1 + B = evalcousot9bb2in(A,B,C) Following rules are weakly oriented: True ==> evalcousot9start(A,B,C) = 1 + C >= C = evalcousot9entryin(A,B,C) True ==> evalcousot9entryin(A,B,C) = C >= C = evalcousot9bb3in(D,C,C) [-1*B + C >= 0 && B >= 1] ==> evalcousot9bb3in(A,B,C) = B >= B = evalcousot9bbin(A,B,C) [-1*B + C >= 0 && 0 >= B] ==> evalcousot9bb3in(A,B,C) = B >= B = evalcousot9returnin(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] ==> evalcousot9bbin(A,B,C) = B >= B = evalcousot9bb1in(A,B,C) [-1 + C >= 0 ==> && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] evalcousot9bb1in(A,B,C) = B >= B = evalcousot9bb3in(-1 + A,B,C) [-1 + C >= 0 ==> && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] evalcousot9bb2in(A,B,C) = -1 + B >= -1 + B = evalcousot9bb3in(C,-1 + B,C) [-1*B + C >= 0 && -1*B >= 0] ==> evalcousot9returnin(A,B,C) = B >= B = evalcousot9stop(A,B,C) * Step 5: Failure MAYBE + Considered Problem: Rules: 0. evalcousot9start(A,B,C) -> evalcousot9entryin(A,B,C) True (1,1) 1. evalcousot9entryin(A,B,C) -> evalcousot9bb3in(D,C,C) True (1,1) 2. evalcousot9bb3in(A,B,C) -> evalcousot9bbin(A,B,C) [-1*B + C >= 0 && B >= 1] (?,1) 3. evalcousot9bb3in(A,B,C) -> evalcousot9returnin(A,B,C) [-1*B + C >= 0 && 0 >= B] (1,1) 4. evalcousot9bbin(A,B,C) -> evalcousot9bb1in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && A >= 1] (?,1) 5. evalcousot9bbin(A,B,C) -> evalcousot9bb2in(A,B,C) [-1 + C >= 0 && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + B >= 0 && 0 >= A] (1 + C,1) 6. evalcousot9bb1in(A,B,C) -> evalcousot9bb3in(-1 + A,B,C) [-1 + C >= 0 (?,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -2 + A + C >= 0 && -1 + B >= 0 && -2 + A + B >= 0 && -1 + A >= 0] 7. evalcousot9bb2in(A,B,C) -> evalcousot9bb3in(C,-1 + B,C) [-1 + C >= 0 (C,1) && -2 + B + C >= 0 && -1*B + C >= 0 && -1 + -1*A + C >= 0 && -1 + B >= 0 && -1 + -1*A + B >= 0 && -1*A >= 0] 8. evalcousot9returnin(A,B,C) -> evalcousot9stop(A,B,C) [-1*B + C >= 0 && -1*B >= 0] (1,1) Signature: {(evalcousot9bb1in,3) ;(evalcousot9bb2in,3) ;(evalcousot9bb3in,3) ;(evalcousot9bbin,3) ;(evalcousot9entryin,3) ;(evalcousot9returnin,3) ;(evalcousot9start,3) ;(evalcousot9stop,3)} Flow Graph: [0->{1},1->{2,3},2->{4,5},3->{8},4->{6},5->{7},6->{2},7->{2,3},8->{}] + Applied Processor: Failing "Open problems left." + Details: Open problems left. MAYBE