YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 2: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (1,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] (1,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x1 + -1*x2 p(eval2) = x1 + -1*x2 p(start) = x1 + -1*x2 Following rules are strictly oriented: [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] ==> eval2(A,B,C) = A + -1*B > -1 + A + -1*B = eval2(-1 + A,B,-1 + C) Following rules are weakly oriented: [A >= 1 + B && C = A] ==> eval1(A,B,C) = A + -1*B >= A + -1*B = eval2(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] ==> eval2(A,B,C) = A + -1*B >= A + -1*B = eval1(A,B,C) True ==> start(A,B,C) = A + -1*B >= A + -1*B = eval1(A,B,C) * Step 4: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (1,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] (A + B,1) 2. eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] (1,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))