MAYBE * Step 1: UnsatPaths MAYBE + Considered Problem: Rules: 0. evalrealheapsortstep2start(A,B,C,D) -> evalrealheapsortstep2entryin(A,B,C,D) True (1,1) 1. evalrealheapsortstep2entryin(A,B,C,D) -> evalrealheapsortstep2bbin(A,B,C,D) [A >= 3] (?,1) 2. evalrealheapsortstep2entryin(A,B,C,D) -> evalrealheapsortstep2returnin(A,B,C,D) [2 >= A] (?,1) 3. evalrealheapsortstep2bbin(A,B,C,D) -> evalrealheapsortstep2bb11in(A,0,C,D) True (?,1) 4. evalrealheapsortstep2bb11in(A,B,C,D) -> evalrealheapsortstep2bb1in(A,B,C,D) [A >= 2 + B] (?,1) 5. evalrealheapsortstep2bb11in(A,B,C,D) -> evalrealheapsortstep2returnin(A,B,C,D) [1 + B >= A] (?,1) 6. evalrealheapsortstep2bb1in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,0,D) True (?,1) 7. evalrealheapsortstep2bb9in(A,B,C,D) -> evalrealheapsortstep2bb2in(A,B,C,D) [A >= 3 + B + 2*C] (?,1) 8. evalrealheapsortstep2bb9in(A,B,C,D) -> evalrealheapsortstep2bb10in(A,B,C,D) [2 + B + 2*C >= A] (?,1) 9. evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb4in(A,B,C,D) [A = 3 + B + 2*C] (?,1) 10. evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb3in(A,B,C,D) [A >= 4 + B + 2*C] (?,1) 11. evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb3in(A,B,C,D) [2 + B + 2*C >= A] (?,1) 12. evalrealheapsortstep2bb3in(A,B,C,D) -> evalrealheapsortstep2bb4in(A,B,C,D) True (?,1) 13. evalrealheapsortstep2bb3in(A,B,C,D) -> evalrealheapsortstep2bb5in(A,B,C,D) True (?,1) 14. evalrealheapsortstep2bb4in(A,B,C,D) -> evalrealheapsortstep2bb6in(A,B,C,1 + 2*C) True (?,1) 15. evalrealheapsortstep2bb5in(A,B,C,D) -> evalrealheapsortstep2bb6in(A,B,C,2 + 2*C) True (?,1) 16. evalrealheapsortstep2bb6in(A,B,C,D) -> evalrealheapsortstep2bb7in(A,B,C,D) True (?,1) 17. evalrealheapsortstep2bb6in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,A,D) True (?,1) 18. evalrealheapsortstep2bb7in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,D,D) True (?,1) 19. evalrealheapsortstep2bb10in(A,B,C,D) -> evalrealheapsortstep2bb11in(A,1 + B,C,D) True (?,1) 20. evalrealheapsortstep2returnin(A,B,C,D) -> evalrealheapsortstep2stop(A,B,C,D) True (?,1) Signature: {(evalrealheapsortstep2bb10in,4) ;(evalrealheapsortstep2bb11in,4) ;(evalrealheapsortstep2bb1in,4) ;(evalrealheapsortstep2bb2in,4) ;(evalrealheapsortstep2bb3in,4) ;(evalrealheapsortstep2bb4in,4) ;(evalrealheapsortstep2bb5in,4) ;(evalrealheapsortstep2bb6in,4) ;(evalrealheapsortstep2bb7in,4) ;(evalrealheapsortstep2bb9in,4) ;(evalrealheapsortstep2bbin,4) ;(evalrealheapsortstep2entryin,4) ;(evalrealheapsortstep2returnin,4) ;(evalrealheapsortstep2start,4) ;(evalrealheapsortstep2stop,4)} Flow Graph: [0->{1,2},1->{3},2->{20},3->{4,5},4->{6},5->{20},6->{7,8},7->{9,10,11},8->{19},9->{14},10->{12,13},11->{12 ,13},12->{14},13->{15},14->{16,17},15->{16,17},16->{18},17->{7,8},18->{7,8},19->{4,5},20->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(7,11)] * Step 2: FromIts MAYBE + Considered Problem: Rules: 0. evalrealheapsortstep2start(A,B,C,D) -> evalrealheapsortstep2entryin(A,B,C,D) True (1,1) 1. evalrealheapsortstep2entryin(A,B,C,D) -> evalrealheapsortstep2bbin(A,B,C,D) [A >= 3] (?,1) 2. evalrealheapsortstep2entryin(A,B,C,D) -> evalrealheapsortstep2returnin(A,B,C,D) [2 >= A] (?,1) 3. evalrealheapsortstep2bbin(A,B,C,D) -> evalrealheapsortstep2bb11in(A,0,C,D) True (?,1) 4. evalrealheapsortstep2bb11in(A,B,C,D) -> evalrealheapsortstep2bb1in(A,B,C,D) [A >= 2 + B] (?,1) 5. evalrealheapsortstep2bb11in(A,B,C,D) -> evalrealheapsortstep2returnin(A,B,C,D) [1 + B >= A] (?,1) 6. evalrealheapsortstep2bb1in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,0,D) True (?,1) 7. evalrealheapsortstep2bb9in(A,B,C,D) -> evalrealheapsortstep2bb2in(A,B,C,D) [A >= 3 + B + 2*C] (?,1) 8. evalrealheapsortstep2bb9in(A,B,C,D) -> evalrealheapsortstep2bb10in(A,B,C,D) [2 + B + 2*C >= A] (?,1) 9. evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb4in(A,B,C,D) [A = 3 + B + 2*C] (?,1) 10. evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb3in(A,B,C,D) [A >= 4 + B + 2*C] (?,1) 11. evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb3in(A,B,C,D) [2 + B + 2*C >= A] (?,1) 12. evalrealheapsortstep2bb3in(A,B,C,D) -> evalrealheapsortstep2bb4in(A,B,C,D) True (?,1) 13. evalrealheapsortstep2bb3in(A,B,C,D) -> evalrealheapsortstep2bb5in(A,B,C,D) True (?,1) 14. evalrealheapsortstep2bb4in(A,B,C,D) -> evalrealheapsortstep2bb6in(A,B,C,1 + 2*C) True (?,1) 15. evalrealheapsortstep2bb5in(A,B,C,D) -> evalrealheapsortstep2bb6in(A,B,C,2 + 2*C) True (?,1) 16. evalrealheapsortstep2bb6in(A,B,C,D) -> evalrealheapsortstep2bb7in(A,B,C,D) True (?,1) 17. evalrealheapsortstep2bb6in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,A,D) True (?,1) 18. evalrealheapsortstep2bb7in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,D,D) True (?,1) 19. evalrealheapsortstep2bb10in(A,B,C,D) -> evalrealheapsortstep2bb11in(A,1 + B,C,D) True (?,1) 20. evalrealheapsortstep2returnin(A,B,C,D) -> evalrealheapsortstep2stop(A,B,C,D) True (?,1) Signature: {(evalrealheapsortstep2bb10in,4) ;(evalrealheapsortstep2bb11in,4) ;(evalrealheapsortstep2bb1in,4) ;(evalrealheapsortstep2bb2in,4) ;(evalrealheapsortstep2bb3in,4) ;(evalrealheapsortstep2bb4in,4) ;(evalrealheapsortstep2bb5in,4) ;(evalrealheapsortstep2bb6in,4) ;(evalrealheapsortstep2bb7in,4) ;(evalrealheapsortstep2bb9in,4) ;(evalrealheapsortstep2bbin,4) ;(evalrealheapsortstep2entryin,4) ;(evalrealheapsortstep2returnin,4) ;(evalrealheapsortstep2start,4) ;(evalrealheapsortstep2stop,4)} Flow Graph: [0->{1,2},1->{3},2->{20},3->{4,5},4->{6},5->{20},6->{7,8},7->{9,10},8->{19},9->{14},10->{12,13},11->{12 ,13},12->{14},13->{15},14->{16,17},15->{16,17},16->{18},17->{7,8},18->{7,8},19->{4,5},20->{}] + Applied Processor: FromIts + Details: () * Step 3: Unfold MAYBE + Considered Problem: Rules: evalrealheapsortstep2start(A,B,C,D) -> evalrealheapsortstep2entryin(A,B,C,D) True evalrealheapsortstep2entryin(A,B,C,D) -> evalrealheapsortstep2bbin(A,B,C,D) [A >= 3] evalrealheapsortstep2entryin(A,B,C,D) -> evalrealheapsortstep2returnin(A,B,C,D) [2 >= A] evalrealheapsortstep2bbin(A,B,C,D) -> evalrealheapsortstep2bb11in(A,0,C,D) True evalrealheapsortstep2bb11in(A,B,C,D) -> evalrealheapsortstep2bb1in(A,B,C,D) [A >= 2 + B] evalrealheapsortstep2bb11in(A,B,C,D) -> evalrealheapsortstep2returnin(A,B,C,D) [1 + B >= A] evalrealheapsortstep2bb1in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,0,D) True evalrealheapsortstep2bb9in(A,B,C,D) -> evalrealheapsortstep2bb2in(A,B,C,D) [A >= 3 + B + 2*C] evalrealheapsortstep2bb9in(A,B,C,D) -> evalrealheapsortstep2bb10in(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb4in(A,B,C,D) [A = 3 + B + 2*C] evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb3in(A,B,C,D) [A >= 4 + B + 2*C] evalrealheapsortstep2bb2in(A,B,C,D) -> evalrealheapsortstep2bb3in(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb3in(A,B,C,D) -> evalrealheapsortstep2bb4in(A,B,C,D) True evalrealheapsortstep2bb3in(A,B,C,D) -> evalrealheapsortstep2bb5in(A,B,C,D) True evalrealheapsortstep2bb4in(A,B,C,D) -> evalrealheapsortstep2bb6in(A,B,C,1 + 2*C) True evalrealheapsortstep2bb5in(A,B,C,D) -> evalrealheapsortstep2bb6in(A,B,C,2 + 2*C) True evalrealheapsortstep2bb6in(A,B,C,D) -> evalrealheapsortstep2bb7in(A,B,C,D) True evalrealheapsortstep2bb6in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,A,D) True evalrealheapsortstep2bb7in(A,B,C,D) -> evalrealheapsortstep2bb9in(A,B,D,D) True evalrealheapsortstep2bb10in(A,B,C,D) -> evalrealheapsortstep2bb11in(A,1 + B,C,D) True evalrealheapsortstep2returnin(A,B,C,D) -> evalrealheapsortstep2stop(A,B,C,D) True Signature: {(evalrealheapsortstep2bb10in,4) ;(evalrealheapsortstep2bb11in,4) ;(evalrealheapsortstep2bb1in,4) ;(evalrealheapsortstep2bb2in,4) ;(evalrealheapsortstep2bb3in,4) ;(evalrealheapsortstep2bb4in,4) ;(evalrealheapsortstep2bb5in,4) ;(evalrealheapsortstep2bb6in,4) ;(evalrealheapsortstep2bb7in,4) ;(evalrealheapsortstep2bb9in,4) ;(evalrealheapsortstep2bbin,4) ;(evalrealheapsortstep2entryin,4) ;(evalrealheapsortstep2returnin,4) ;(evalrealheapsortstep2start,4) ;(evalrealheapsortstep2stop,4)} Rule Graph: [0->{1,2},1->{3},2->{20},3->{4,5},4->{6},5->{20},6->{7,8},7->{9,10},8->{19},9->{14},10->{12,13},11->{12 ,13},12->{14},13->{15},14->{16,17},15->{16,17},16->{18},17->{7,8},18->{7,8},19->{4,5},20->{}] + Applied Processor: Unfold + Details: () * Step 4: AddSinks MAYBE + Considered Problem: Rules: evalrealheapsortstep2start.0(A,B,C,D) -> evalrealheapsortstep2entryin.1(A,B,C,D) True evalrealheapsortstep2start.0(A,B,C,D) -> evalrealheapsortstep2entryin.2(A,B,C,D) True evalrealheapsortstep2entryin.1(A,B,C,D) -> evalrealheapsortstep2bbin.3(A,B,C,D) [A >= 3] evalrealheapsortstep2entryin.2(A,B,C,D) -> evalrealheapsortstep2returnin.20(A,B,C,D) [2 >= A] evalrealheapsortstep2bbin.3(A,B,C,D) -> evalrealheapsortstep2bb11in.4(A,0,C,D) True evalrealheapsortstep2bbin.3(A,B,C,D) -> evalrealheapsortstep2bb11in.5(A,0,C,D) True evalrealheapsortstep2bb11in.4(A,B,C,D) -> evalrealheapsortstep2bb1in.6(A,B,C,D) [A >= 2 + B] evalrealheapsortstep2bb11in.5(A,B,C,D) -> evalrealheapsortstep2returnin.20(A,B,C,D) [1 + B >= A] evalrealheapsortstep2bb1in.6(A,B,C,D) -> evalrealheapsortstep2bb9in.7(A,B,0,D) True evalrealheapsortstep2bb1in.6(A,B,C,D) -> evalrealheapsortstep2bb9in.8(A,B,0,D) True evalrealheapsortstep2bb9in.7(A,B,C,D) -> evalrealheapsortstep2bb2in.9(A,B,C,D) [A >= 3 + B + 2*C] evalrealheapsortstep2bb9in.7(A,B,C,D) -> evalrealheapsortstep2bb2in.10(A,B,C,D) [A >= 3 + B + 2*C] evalrealheapsortstep2bb9in.8(A,B,C,D) -> evalrealheapsortstep2bb10in.19(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb2in.9(A,B,C,D) -> evalrealheapsortstep2bb4in.14(A,B,C,D) [A = 3 + B + 2*C] evalrealheapsortstep2bb2in.10(A,B,C,D) -> evalrealheapsortstep2bb3in.12(A,B,C,D) [A >= 4 + B + 2*C] evalrealheapsortstep2bb2in.10(A,B,C,D) -> evalrealheapsortstep2bb3in.13(A,B,C,D) [A >= 4 + B + 2*C] evalrealheapsortstep2bb2in.11(A,B,C,D) -> evalrealheapsortstep2bb3in.12(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb2in.11(A,B,C,D) -> evalrealheapsortstep2bb3in.13(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb3in.12(A,B,C,D) -> evalrealheapsortstep2bb4in.14(A,B,C,D) True evalrealheapsortstep2bb3in.13(A,B,C,D) -> evalrealheapsortstep2bb5in.15(A,B,C,D) True evalrealheapsortstep2bb4in.14(A,B,C,D) -> evalrealheapsortstep2bb6in.16(A,B,C,1 + 2*C) True evalrealheapsortstep2bb4in.14(A,B,C,D) -> evalrealheapsortstep2bb6in.17(A,B,C,1 + 2*C) True evalrealheapsortstep2bb5in.15(A,B,C,D) -> evalrealheapsortstep2bb6in.16(A,B,C,2 + 2*C) True evalrealheapsortstep2bb5in.15(A,B,C,D) -> evalrealheapsortstep2bb6in.17(A,B,C,2 + 2*C) True evalrealheapsortstep2bb6in.16(A,B,C,D) -> evalrealheapsortstep2bb7in.18(A,B,C,D) True evalrealheapsortstep2bb6in.17(A,B,C,D) -> evalrealheapsortstep2bb9in.7(A,B,A,D) True evalrealheapsortstep2bb6in.17(A,B,C,D) -> evalrealheapsortstep2bb9in.8(A,B,A,D) True evalrealheapsortstep2bb7in.18(A,B,C,D) -> evalrealheapsortstep2bb9in.7(A,B,D,D) True evalrealheapsortstep2bb7in.18(A,B,C,D) -> evalrealheapsortstep2bb9in.8(A,B,D,D) True evalrealheapsortstep2bb10in.19(A,B,C,D) -> evalrealheapsortstep2bb11in.4(A,1 + B,C,D) True evalrealheapsortstep2bb10in.19(A,B,C,D) -> evalrealheapsortstep2bb11in.5(A,1 + B,C,D) True evalrealheapsortstep2returnin.20(A,B,C,D) -> evalrealheapsortstep2stop.21(A,B,C,D) True Signature: {(evalrealheapsortstep2bb10in.19,4) ;(evalrealheapsortstep2bb11in.4,4) ;(evalrealheapsortstep2bb11in.5,4) ;(evalrealheapsortstep2bb1in.6,4) ;(evalrealheapsortstep2bb2in.10,4) ;(evalrealheapsortstep2bb2in.11,4) ;(evalrealheapsortstep2bb2in.9,4) ;(evalrealheapsortstep2bb3in.12,4) ;(evalrealheapsortstep2bb3in.13,4) ;(evalrealheapsortstep2bb4in.14,4) ;(evalrealheapsortstep2bb5in.15,4) ;(evalrealheapsortstep2bb6in.16,4) ;(evalrealheapsortstep2bb6in.17,4) ;(evalrealheapsortstep2bb7in.18,4) ;(evalrealheapsortstep2bb9in.7,4) ;(evalrealheapsortstep2bb9in.8,4) ;(evalrealheapsortstep2bbin.3,4) ;(evalrealheapsortstep2entryin.1,4) ;(evalrealheapsortstep2entryin.2,4) ;(evalrealheapsortstep2returnin.20,4) ;(evalrealheapsortstep2start.0,4) ;(evalrealheapsortstep2stop.21,4)} Rule Graph: [0->{2},1->{3},2->{4,5},3->{31},4->{6},5->{7},6->{8,9},7->{31},8->{10,11},9->{12},10->{13},11->{14,15} ,12->{29,30},13->{20,21},14->{18},15->{19},16->{18},17->{19},18->{20,21},19->{22,23},20->{24},21->{25,26} ,22->{24},23->{25,26},24->{27,28},25->{10,11},26->{12},27->{10,11},28->{12},29->{6},30->{7},31->{}] + Applied Processor: AddSinks + Details: () * Step 5: Failure MAYBE + Considered Problem: Rules: evalrealheapsortstep2start.0(A,B,C,D) -> evalrealheapsortstep2entryin.1(A,B,C,D) True evalrealheapsortstep2start.0(A,B,C,D) -> evalrealheapsortstep2entryin.2(A,B,C,D) True evalrealheapsortstep2entryin.1(A,B,C,D) -> evalrealheapsortstep2bbin.3(A,B,C,D) [A >= 3] evalrealheapsortstep2entryin.2(A,B,C,D) -> evalrealheapsortstep2returnin.20(A,B,C,D) [2 >= A] evalrealheapsortstep2bbin.3(A,B,C,D) -> evalrealheapsortstep2bb11in.4(A,0,C,D) True evalrealheapsortstep2bbin.3(A,B,C,D) -> evalrealheapsortstep2bb11in.5(A,0,C,D) True evalrealheapsortstep2bb11in.4(A,B,C,D) -> evalrealheapsortstep2bb1in.6(A,B,C,D) [A >= 2 + B] evalrealheapsortstep2bb11in.5(A,B,C,D) -> evalrealheapsortstep2returnin.20(A,B,C,D) [1 + B >= A] evalrealheapsortstep2bb1in.6(A,B,C,D) -> evalrealheapsortstep2bb9in.7(A,B,0,D) True evalrealheapsortstep2bb1in.6(A,B,C,D) -> evalrealheapsortstep2bb9in.8(A,B,0,D) True evalrealheapsortstep2bb9in.7(A,B,C,D) -> evalrealheapsortstep2bb2in.9(A,B,C,D) [A >= 3 + B + 2*C] evalrealheapsortstep2bb9in.7(A,B,C,D) -> evalrealheapsortstep2bb2in.10(A,B,C,D) [A >= 3 + B + 2*C] evalrealheapsortstep2bb9in.8(A,B,C,D) -> evalrealheapsortstep2bb10in.19(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb2in.9(A,B,C,D) -> evalrealheapsortstep2bb4in.14(A,B,C,D) [A = 3 + B + 2*C] evalrealheapsortstep2bb2in.10(A,B,C,D) -> evalrealheapsortstep2bb3in.12(A,B,C,D) [A >= 4 + B + 2*C] evalrealheapsortstep2bb2in.10(A,B,C,D) -> evalrealheapsortstep2bb3in.13(A,B,C,D) [A >= 4 + B + 2*C] evalrealheapsortstep2bb2in.11(A,B,C,D) -> evalrealheapsortstep2bb3in.12(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb2in.11(A,B,C,D) -> evalrealheapsortstep2bb3in.13(A,B,C,D) [2 + B + 2*C >= A] evalrealheapsortstep2bb3in.12(A,B,C,D) -> evalrealheapsortstep2bb4in.14(A,B,C,D) True evalrealheapsortstep2bb3in.13(A,B,C,D) -> evalrealheapsortstep2bb5in.15(A,B,C,D) True evalrealheapsortstep2bb4in.14(A,B,C,D) -> evalrealheapsortstep2bb6in.16(A,B,C,1 + 2*C) True evalrealheapsortstep2bb4in.14(A,B,C,D) -> evalrealheapsortstep2bb6in.17(A,B,C,1 + 2*C) True evalrealheapsortstep2bb5in.15(A,B,C,D) -> evalrealheapsortstep2bb6in.16(A,B,C,2 + 2*C) True evalrealheapsortstep2bb5in.15(A,B,C,D) -> evalrealheapsortstep2bb6in.17(A,B,C,2 + 2*C) True evalrealheapsortstep2bb6in.16(A,B,C,D) -> evalrealheapsortstep2bb7in.18(A,B,C,D) True evalrealheapsortstep2bb6in.17(A,B,C,D) -> evalrealheapsortstep2bb9in.7(A,B,A,D) True evalrealheapsortstep2bb6in.17(A,B,C,D) -> evalrealheapsortstep2bb9in.8(A,B,A,D) True evalrealheapsortstep2bb7in.18(A,B,C,D) -> evalrealheapsortstep2bb9in.7(A,B,D,D) True evalrealheapsortstep2bb7in.18(A,B,C,D) -> evalrealheapsortstep2bb9in.8(A,B,D,D) True evalrealheapsortstep2bb10in.19(A,B,C,D) -> evalrealheapsortstep2bb11in.4(A,1 + B,C,D) True evalrealheapsortstep2bb10in.19(A,B,C,D) -> evalrealheapsortstep2bb11in.5(A,1 + B,C,D) True evalrealheapsortstep2returnin.20(A,B,C,D) -> evalrealheapsortstep2stop.21(A,B,C,D) True evalrealheapsortstep2stop.21(A,B,C,D) -> exitus616(A,B,C,D) True evalrealheapsortstep2stop.21(A,B,C,D) -> exitus616(A,B,C,D) True evalrealheapsortstep2stop.21(A,B,C,D) -> exitus616(A,B,C,D) True evalrealheapsortstep2stop.21(A,B,C,D) -> exitus616(A,B,C,D) True evalrealheapsortstep2stop.21(A,B,C,D) -> exitus616(A,B,C,D) True Signature: {(evalrealheapsortstep2bb10in.19,4) ;(evalrealheapsortstep2bb11in.4,4) ;(evalrealheapsortstep2bb11in.5,4) ;(evalrealheapsortstep2bb1in.6,4) ;(evalrealheapsortstep2bb2in.10,4) ;(evalrealheapsortstep2bb2in.11,4) ;(evalrealheapsortstep2bb2in.9,4) ;(evalrealheapsortstep2bb3in.12,4) ;(evalrealheapsortstep2bb3in.13,4) ;(evalrealheapsortstep2bb4in.14,4) ;(evalrealheapsortstep2bb5in.15,4) ;(evalrealheapsortstep2bb6in.16,4) ;(evalrealheapsortstep2bb6in.17,4) ;(evalrealheapsortstep2bb7in.18,4) ;(evalrealheapsortstep2bb9in.7,4) ;(evalrealheapsortstep2bb9in.8,4) ;(evalrealheapsortstep2bbin.3,4) ;(evalrealheapsortstep2entryin.1,4) ;(evalrealheapsortstep2entryin.2,4) ;(evalrealheapsortstep2returnin.20,4) ;(evalrealheapsortstep2start.0,4) ;(evalrealheapsortstep2stop.21,4) ;(exitus616,4)} Rule Graph: [0->{2},1->{3},2->{4,5},3->{31},4->{6},5->{7},6->{8,9},7->{31},8->{10,11},9->{12},10->{13},11->{14,15} ,12->{29,30},13->{20,21},14->{18},15->{19},16->{18},17->{19},18->{20,21},19->{22,23},20->{24},21->{25,26} ,22->{24},23->{25,26},24->{27,28},25->{10,11},26->{12},27->{10,11},28->{12},29->{6},30->{7},31->{32,33,34,35 ,36}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] | `- p:[6,29,12,9,26,21,13,10,8,25,23,19,15,11,27,24,20,18,14,22,28] c: [6,8,9,12,26,28,29] | `- p:[10,25,21,13,18,14,11,27,24,20,22,19,15,23] c: [] MAYBE