MAYBE * Step 1: ArgumentFilter MAYBE + Considered Problem: Rules: 0. f17(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f17(A,Q,C,1 + D,P,F,G,H,I,J,K,L,M,N,O) [A >= 1 + B && C >= 0 && D >= 0] (?,1) 1. f17(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f17(A,Q,C,1 + D,P,F,G,H,I,J,K,L,M,N,O) [B >= 1 + A && C >= 0 && D >= 0] (?,1) 2. f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f17(A,Q,C,1,P,F,G,H,I,J,K,L,M,N,O) [F >= 0 && A >= 1 + B] (?,1) 3. f18(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f17(A,Q,C,1,P,F,G,H,I,J,K,L,M,N,O) [F >= 0 && B >= 1 + A] (?,1) 4. f17(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f20(B,B,C,D,E,F,P,H,I,J,K,L,M,N,O) [C >= 0 && D >= 0 && B = A] (?,1) 5. f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f18(A,H,C,D,E,F,Q,H,2,P,P,P,P,3,0) [A >= 1 + H && F >= 0] (1,1) 6. f22(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O) -> f18(A,H,C,D,E,F,Q,H,2,P,P,P,P,3,0) [H >= 1 + A && F >= 0] (1,1) Signature: {(f17,15);(f18,15);(f20,15);(f22,15)} Flow Graph: [0->{0,1,4},1->{0,1,4},2->{0,1,4},3->{0,1,4},4->{},5->{2,3},6->{2,3}] + Applied Processor: ArgumentFilter [4,6,8,9,10,11,12,13,14] + Details: We remove following argument positions: [4,6,8,9,10,11,12,13,14]. * Step 2: UnsatPaths MAYBE + Considered Problem: Rules: 0. f17(A,B,C,D,F,H) -> f17(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] (?,1) 1. f17(A,B,C,D,F,H) -> f17(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] (?,1) 2. f18(A,B,C,D,F,H) -> f17(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] (?,1) 3. f18(A,B,C,D,F,H) -> f17(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] (?,1) 4. f17(A,B,C,D,F,H) -> f20(B,B,C,D,F,H) [C >= 0 && D >= 0 && B = A] (?,1) 5. f22(A,B,C,D,F,H) -> f18(A,H,C,D,F,H) [A >= 1 + H && F >= 0] (1,1) 6. f22(A,B,C,D,F,H) -> f18(A,H,C,D,F,H) [H >= 1 + A && F >= 0] (1,1) Signature: {(f17,15);(f18,15);(f20,15);(f22,15)} Flow Graph: [0->{0,1,4},1->{0,1,4},2->{0,1,4},3->{0,1,4},4->{},5->{2,3},6->{2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(5,3),(6,2)] * Step 3: FromIts MAYBE + Considered Problem: Rules: 0. f17(A,B,C,D,F,H) -> f17(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] (?,1) 1. f17(A,B,C,D,F,H) -> f17(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] (?,1) 2. f18(A,B,C,D,F,H) -> f17(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] (?,1) 3. f18(A,B,C,D,F,H) -> f17(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] (?,1) 4. f17(A,B,C,D,F,H) -> f20(B,B,C,D,F,H) [C >= 0 && D >= 0 && B = A] (?,1) 5. f22(A,B,C,D,F,H) -> f18(A,H,C,D,F,H) [A >= 1 + H && F >= 0] (1,1) 6. f22(A,B,C,D,F,H) -> f18(A,H,C,D,F,H) [H >= 1 + A && F >= 0] (1,1) Signature: {(f17,15);(f18,15);(f20,15);(f22,15)} Flow Graph: [0->{0,1,4},1->{0,1,4},2->{0,1,4},3->{0,1,4},4->{},5->{2},6->{3}] + Applied Processor: FromIts + Details: () * Step 4: Unfold MAYBE + Considered Problem: Rules: f17(A,B,C,D,F,H) -> f17(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17(A,B,C,D,F,H) -> f17(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f18(A,B,C,D,F,H) -> f17(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18(A,B,C,D,F,H) -> f17(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f17(A,B,C,D,F,H) -> f20(B,B,C,D,F,H) [C >= 0 && D >= 0 && B = A] f22(A,B,C,D,F,H) -> f18(A,H,C,D,F,H) [A >= 1 + H && F >= 0] f22(A,B,C,D,F,H) -> f18(A,H,C,D,F,H) [H >= 1 + A && F >= 0] Signature: {(f17,15);(f18,15);(f20,15);(f22,15)} Rule Graph: [0->{0,1,4},1->{0,1,4},2->{0,1,4},3->{0,1,4},4->{},5->{2},6->{3}] + Applied Processor: Unfold + Details: () * Step 5: AddSinks MAYBE + Considered Problem: Rules: f17.0(A,B,C,D,F,H) -> f17.0(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17.0(A,B,C,D,F,H) -> f17.1(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17.0(A,B,C,D,F,H) -> f17.4(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17.1(A,B,C,D,F,H) -> f17.0(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f17.1(A,B,C,D,F,H) -> f17.1(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f17.1(A,B,C,D,F,H) -> f17.4(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f18.2(A,B,C,D,F,H) -> f17.0(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18.2(A,B,C,D,F,H) -> f17.1(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18.2(A,B,C,D,F,H) -> f17.4(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18.3(A,B,C,D,F,H) -> f17.0(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f18.3(A,B,C,D,F,H) -> f17.1(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f18.3(A,B,C,D,F,H) -> f17.4(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f17.4(A,B,C,D,F,H) -> f20.7(B,B,C,D,F,H) [C >= 0 && D >= 0 && B = A] f22.5(A,B,C,D,F,H) -> f18.2(A,H,C,D,F,H) [A >= 1 + H && F >= 0] f22.6(A,B,C,D,F,H) -> f18.3(A,H,C,D,F,H) [H >= 1 + A && F >= 0] Signature: {(f17.0,6);(f17.1,6);(f17.4,6);(f18.2,6);(f18.3,6);(f20.7,6);(f22.5,6);(f22.6,6)} Rule Graph: [0->{0,1,2},1->{3,4,5},2->{12},3->{0,1,2},4->{3,4,5},5->{12},6->{0,1,2},7->{3,4,5},8->{12},9->{0,1,2} ,10->{3,4,5},11->{12},12->{},13->{6,7,8},14->{9,10,11}] + Applied Processor: AddSinks + Details: () * Step 6: Failure MAYBE + Considered Problem: Rules: f17.0(A,B,C,D,F,H) -> f17.0(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17.0(A,B,C,D,F,H) -> f17.1(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17.0(A,B,C,D,F,H) -> f17.4(A,Q,C,1 + D,F,H) [A >= 1 + B && C >= 0 && D >= 0] f17.1(A,B,C,D,F,H) -> f17.0(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f17.1(A,B,C,D,F,H) -> f17.1(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f17.1(A,B,C,D,F,H) -> f17.4(A,Q,C,1 + D,F,H) [B >= 1 + A && C >= 0 && D >= 0] f18.2(A,B,C,D,F,H) -> f17.0(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18.2(A,B,C,D,F,H) -> f17.1(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18.2(A,B,C,D,F,H) -> f17.4(A,Q,C,1,F,H) [F >= 0 && A >= 1 + B] f18.3(A,B,C,D,F,H) -> f17.0(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f18.3(A,B,C,D,F,H) -> f17.1(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f18.3(A,B,C,D,F,H) -> f17.4(A,Q,C,1,F,H) [F >= 0 && B >= 1 + A] f17.4(A,B,C,D,F,H) -> f20.7(B,B,C,D,F,H) [C >= 0 && D >= 0 && B = A] f22.5(A,B,C,D,F,H) -> f18.2(A,H,C,D,F,H) [A >= 1 + H && F >= 0] f22.6(A,B,C,D,F,H) -> f18.3(A,H,C,D,F,H) [H >= 1 + A && F >= 0] f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True f20.7(A,B,C,D,F,H) -> exitus616(A,B,C,D,F,H) True Signature: {(exitus616,6);(f17.0,6);(f17.1,6);(f17.4,6);(f18.2,6);(f18.3,6);(f20.7,6);(f22.5,6);(f22.6,6)} Rule Graph: [0->{0,1,2},1->{3,4,5},2->{12},3->{0,1,2},4->{3,4,5},5->{12},6->{0,1,2},7->{3,4,5},8->{12},9->{0,1,2} ,10->{3,4,5},11->{12},12->{15,16,17,18,19,20,21,22,23,24},13->{6,7,8},14->{9,10,11}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24] | `- p:[0,3,1,4] c: [] MAYBE