YES(?,O(n^1)) * Step 1: UnsatRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 1. f300(A,B,C) -> f1(A,B,D) [A >= 1 && 0 >= A + B && B >= 1] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 4. f2(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{0,1,2,3},1->{},2->{},3->{},4->{0,1,2,3}] + Applied Processor: UnsatRules + Details: Following transitions have unsatisfiable constraints and are removed: [1] * Step 2: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 4. f2(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{0,2,3},2->{},3->{},4->{0,2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2)] * Step 3: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (?,1) 3. f300(A,B,C) -> f1(A,B,D) [0 >= B] (?,1) 4. f2(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{0,3},2->{},3->{},4->{0,2,3}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 4: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (?,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (1,1) 3. f300(A,B,C) -> f1(A,B,D) [0 >= B] (1,1) 4. f2(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{0,3},2->{},3->{},4->{0,2,3}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f1) = x1 p(f2) = x1 p(f300) = x1 Following rules are strictly oriented: [A >= 1 && A + B >= 1 && B >= 1] ==> f300(A,B,C) = A > -1 + A = f300(-1 + A,-2 + A,C) Following rules are weakly oriented: [B >= 1 && 0 >= A] ==> f300(A,B,C) = A >= A = f1(A,B,D) [0 >= B] ==> f300(A,B,C) = A >= A = f1(A,B,D) True ==> f2(A,B,C) = A >= A = f300(A,B,C) * Step 5: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f300(A,B,C) -> f300(-1 + A,-2 + A,C) [A >= 1 && A + B >= 1 && B >= 1] (A,1) 2. f300(A,B,C) -> f1(A,B,D) [B >= 1 && 0 >= A] (1,1) 3. f300(A,B,C) -> f1(A,B,D) [0 >= B] (1,1) 4. f2(A,B,C) -> f300(A,B,C) True (1,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{0,3},2->{},3->{},4->{0,2,3}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))