YES(?,O(1)) * Step 1: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [0 >= 1 + F] (1,1) 1. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [F >= 1] (1,1) 2. f0(A,B,C,D,E) -> f7(0,1023,0,D,E) True (1,1) 3. f7(A,B,C,D,E) -> f7(A,B,1 + C,2 + D,E) [B >= C] (?,1) 4. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,5);(f21,5);(f7,5)} Flow Graph: [0->{3,4,5,6},1->{3,4,5,6},2->{3,4,5,6},3->{3,4,5,6},4->{},5->{},6->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)] * Step 2: TrivialSCCs WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [0 >= 1 + F] (1,1) 1. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [F >= 1] (1,1) 2. f0(A,B,C,D,E) -> f7(0,1023,0,D,E) True (1,1) 3. f7(A,B,C,D,E) -> f7(A,B,1 + C,2 + D,E) [B >= C] (?,1) 4. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [E >= 0 && C >= 1 + B && 1022 >= E] (?,1) 5. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && E >= 1023] (?,1) 6. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && 0 >= 1 + E] (?,1) Signature: {(f0,5);(f21,5);(f7,5)} Flow Graph: [0->{3},1->{3},2->{3},3->{3,4,5,6},4->{},5->{},6->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [0 >= 1 + F] (1,1) 1. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [F >= 1] (1,1) 2. f0(A,B,C,D,E) -> f7(0,1023,0,D,E) True (1,1) 3. f7(A,B,C,D,E) -> f7(A,B,1 + C,2 + D,E) [B >= C] (?,1) 4. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [E >= 0 && C >= 1 + B && 1022 >= E] (1,1) 5. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && E >= 1023] (1,1) 6. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && 0 >= 1 + E] (1,1) Signature: {(f0,5);(f21,5);(f7,5)} Flow Graph: [0->{3},1->{3},2->{3},3->{3,4,5,6},4->{},5->{},6->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 1024 p(f21) = 1 + x2 + -1*x3 p(f7) = 1 + x2 + -1*x3 Following rules are strictly oriented: [B >= C] ==> f7(A,B,C,D,E) = 1 + B + -1*C > B + -1*C = f7(A,B,1 + C,2 + D,E) Following rules are weakly oriented: [0 >= 1 + F] ==> f0(A,B,C,D,E) = 1024 >= 1 = f7(F,0,0,D,E) [F >= 1] ==> f0(A,B,C,D,E) = 1024 >= 1 = f7(F,0,0,D,E) True ==> f0(A,B,C,D,E) = 1024 >= 1024 = f7(0,1023,0,D,E) [E >= 0 && C >= 1 + B && 1022 >= E] ==> f7(A,B,C,D,E) = 1 + B + -1*C >= 1 + B + -1*C = f21(A,B,C,D,E) [C >= 1 + B && E >= 1023] ==> f7(A,B,C,D,E) = 1 + B + -1*C >= 1 + B + -1*C = f21(A,B,C,D,E) [C >= 1 + B && 0 >= 1 + E] ==> f7(A,B,C,D,E) = 1 + B + -1*C >= 1 + B + -1*C = f21(A,B,C,D,E) * Step 4: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [0 >= 1 + F] (1,1) 1. f0(A,B,C,D,E) -> f7(F,0,0,D,E) [F >= 1] (1,1) 2. f0(A,B,C,D,E) -> f7(0,1023,0,D,E) True (1,1) 3. f7(A,B,C,D,E) -> f7(A,B,1 + C,2 + D,E) [B >= C] (1024,1) 4. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [E >= 0 && C >= 1 + B && 1022 >= E] (1,1) 5. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && E >= 1023] (1,1) 6. f7(A,B,C,D,E) -> f21(A,B,C,D,E) [C >= 1 + B && 0 >= 1 + E] (1,1) Signature: {(f0,5);(f21,5);(f7,5)} Flow Graph: [0->{3},1->{3},2->{3},3->{3,4,5,6},4->{},5->{},6->{}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(1))