MAYBE * Step 1: UnreachableRules MAYBE + Considered Problem: Rules: 0. f11(A,B,C) -> f14(A,B,C) [A >= 6] (?,1) 1. f11(A,B,C) -> f14(A,B,C) [5 >= A && 0 >= B] (?,1) 2. f14(A,B,C) -> f11(1 + A,D,C) [A >= 6] (?,1) 3. f26(A,B,C) -> f27(A,B,C) True (?,1) 4. f27(A,B,C) -> f27(A,B,C) True (?,1) 5. f29(A,B,C) -> f32(A,B,C) True (?,1) 6. f20(A,B,C) -> f20(-1 + A,B,C) [A >= 3] (?,1) 7. f20(A,B,C) -> f11(A,D,C) [2 >= A] (?,1) 8. f14(A,B,C) -> f11(1 + A,D,C) [5 >= A] (?,1) 9. f11(A,B,C) -> f20(A,B,C) [5 >= A && B >= 1] (?,1) 10. f0(A,B,C) -> f11(D,E,D) True (1,1) Signature: {(f0,3);(f11,3);(f14,3);(f20,3);(f26,3);(f27,3);(f29,3);(f32,3)} Flow Graph: [0->{2,8},1->{2,8},2->{0,1,9},3->{4},4->{4},5->{},6->{6,7},7->{0,1,9},8->{0,1,9},9->{6,7},10->{0,1,9}] + Applied Processor: UnreachableRules + Details: Following transitions are not reachable from the starting states and are revomed: [3,4,5] * Step 2: UnsatPaths MAYBE + Considered Problem: Rules: 0. f11(A,B,C) -> f14(A,B,C) [A >= 6] (?,1) 1. f11(A,B,C) -> f14(A,B,C) [5 >= A && 0 >= B] (?,1) 2. f14(A,B,C) -> f11(1 + A,D,C) [A >= 6] (?,1) 6. f20(A,B,C) -> f20(-1 + A,B,C) [A >= 3] (?,1) 7. f20(A,B,C) -> f11(A,D,C) [2 >= A] (?,1) 8. f14(A,B,C) -> f11(1 + A,D,C) [5 >= A] (?,1) 9. f11(A,B,C) -> f20(A,B,C) [5 >= A && B >= 1] (?,1) 10. f0(A,B,C) -> f11(D,E,D) True (1,1) Signature: {(f0,3);(f11,3);(f14,3);(f20,3);(f26,3);(f27,3);(f29,3);(f32,3)} Flow Graph: [0->{2,8},1->{2,8},2->{0,1,9},6->{6,7},7->{0,1,9},8->{0,1,9},9->{6,7},10->{0,1,9}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,8),(1,2),(2,1),(2,9),(7,0)] * Step 3: FromIts MAYBE + Considered Problem: Rules: 0. f11(A,B,C) -> f14(A,B,C) [A >= 6] (?,1) 1. f11(A,B,C) -> f14(A,B,C) [5 >= A && 0 >= B] (?,1) 2. f14(A,B,C) -> f11(1 + A,D,C) [A >= 6] (?,1) 6. f20(A,B,C) -> f20(-1 + A,B,C) [A >= 3] (?,1) 7. f20(A,B,C) -> f11(A,D,C) [2 >= A] (?,1) 8. f14(A,B,C) -> f11(1 + A,D,C) [5 >= A] (?,1) 9. f11(A,B,C) -> f20(A,B,C) [5 >= A && B >= 1] (?,1) 10. f0(A,B,C) -> f11(D,E,D) True (1,1) Signature: {(f0,3);(f11,3);(f14,3);(f20,3);(f26,3);(f27,3);(f29,3);(f32,3)} Flow Graph: [0->{2},1->{8},2->{0},6->{6,7},7->{1,9},8->{0,1,9},9->{6,7},10->{0,1,9}] + Applied Processor: FromIts + Details: () * Step 4: Unfold MAYBE + Considered Problem: Rules: f11(A,B,C) -> f14(A,B,C) [A >= 6] f11(A,B,C) -> f14(A,B,C) [5 >= A && 0 >= B] f14(A,B,C) -> f11(1 + A,D,C) [A >= 6] f20(A,B,C) -> f20(-1 + A,B,C) [A >= 3] f20(A,B,C) -> f11(A,D,C) [2 >= A] f14(A,B,C) -> f11(1 + A,D,C) [5 >= A] f11(A,B,C) -> f20(A,B,C) [5 >= A && B >= 1] f0(A,B,C) -> f11(D,E,D) True Signature: {(f0,3);(f11,3);(f14,3);(f20,3);(f26,3);(f27,3);(f29,3);(f32,3)} Rule Graph: [0->{2},1->{8},2->{0},6->{6,7},7->{1,9},8->{0,1,9},9->{6,7},10->{0,1,9}] + Applied Processor: Unfold + Details: () * Step 5: AddSinks MAYBE + Considered Problem: Rules: f11.0(A,B,C) -> f14.2(A,B,C) [A >= 6] f11.1(A,B,C) -> f14.8(A,B,C) [5 >= A && 0 >= B] f14.2(A,B,C) -> f11.0(1 + A,D,C) [A >= 6] f20.6(A,B,C) -> f20.6(-1 + A,B,C) [A >= 3] f20.6(A,B,C) -> f20.7(-1 + A,B,C) [A >= 3] f20.7(A,B,C) -> f11.1(A,D,C) [2 >= A] f20.7(A,B,C) -> f11.9(A,D,C) [2 >= A] f14.8(A,B,C) -> f11.0(1 + A,D,C) [5 >= A] f14.8(A,B,C) -> f11.1(1 + A,D,C) [5 >= A] f14.8(A,B,C) -> f11.9(1 + A,D,C) [5 >= A] f11.9(A,B,C) -> f20.6(A,B,C) [5 >= A && B >= 1] f11.9(A,B,C) -> f20.7(A,B,C) [5 >= A && B >= 1] f0.10(A,B,C) -> f11.0(D,E,D) True f0.10(A,B,C) -> f11.1(D,E,D) True f0.10(A,B,C) -> f11.9(D,E,D) True Signature: {(f0.10,3);(f11.0,3);(f11.1,3);(f11.9,3);(f14.2,3);(f14.8,3);(f20.6,3);(f20.7,3)} Rule Graph: [0->{2},1->{7,8,9},2->{0},3->{3,4},4->{5,6},5->{1},6->{10,11},7->{0},8->{1},9->{10,11},10->{3,4},11->{5,6} ,12->{0},13->{1},14->{10,11}] + Applied Processor: AddSinks + Details: () * Step 6: Failure MAYBE + Considered Problem: Rules: f11.0(A,B,C) -> f14.2(A,B,C) [A >= 6] f11.1(A,B,C) -> f14.8(A,B,C) [5 >= A && 0 >= B] f14.2(A,B,C) -> f11.0(1 + A,D,C) [A >= 6] f20.6(A,B,C) -> f20.6(-1 + A,B,C) [A >= 3] f20.6(A,B,C) -> f20.7(-1 + A,B,C) [A >= 3] f20.7(A,B,C) -> f11.1(A,D,C) [2 >= A] f20.7(A,B,C) -> f11.9(A,D,C) [2 >= A] f14.8(A,B,C) -> f11.0(1 + A,D,C) [5 >= A] f14.8(A,B,C) -> f11.1(1 + A,D,C) [5 >= A] f14.8(A,B,C) -> f11.9(1 + A,D,C) [5 >= A] f11.9(A,B,C) -> f20.6(A,B,C) [5 >= A && B >= 1] f11.9(A,B,C) -> f20.7(A,B,C) [5 >= A && B >= 1] f0.10(A,B,C) -> f11.0(D,E,D) True f0.10(A,B,C) -> f11.1(D,E,D) True f0.10(A,B,C) -> f11.9(D,E,D) True f14.2(A,B,C) -> exitus616(A,B,C) True f11.0(A,B,C) -> exitus616(A,B,C) True f14.2(A,B,C) -> exitus616(A,B,C) True f11.0(A,B,C) -> exitus616(A,B,C) True f14.2(A,B,C) -> exitus616(A,B,C) True f11.0(A,B,C) -> exitus616(A,B,C) True Signature: {(exitus616,3);(f0.10,3);(f11.0,3);(f11.1,3);(f11.9,3);(f14.2,3);(f14.8,3);(f20.6,3);(f20.7,3)} Rule Graph: [0->{2,15,17,19},1->{7,8,9},2->{0,16,18,20},3->{3,4},4->{5,6},5->{1},6->{10,11},7->{0},8->{1},9->{10,11} ,10->{3,4},11->{5,6},12->{0},13->{1},14->{10,11}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] | +- p:[1,5,4,3,10,6,11,9,8] c: [] | `- p:[0,2] c: [] MAYBE