YES(?,O(n^1)) * Step 1: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f0(A,B,C) -> f3(-1*A,B,C) True (?,1) 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) 10. f5(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 11. f5(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [0->{1,4,5,6,7},1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4 ,5,6,7},10->{1,4,5,6,7},11->{1,4,5,6,7}] + Applied Processor: UnreachableRules + Details: Following transitions are not reachable from the starting states and are revomed: [0,10,11] * Step 2: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [1->{},2->{},3->{2,8,9},4->{2,8,9},5->{2,8,9},6->{2,8,9},7->{2,8,9},8->{1,4,5,6,7},9->{1,4,5,6,7}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(3,2) ,(3,8) ,(4,8) ,(5,8) ,(6,2) ,(6,9) ,(7,2) ,(7,9) ,(8,1) ,(8,4) ,(8,5) ,(8,7) ,(9,5) ,(9,6) ,(9,7)] * Step 3: UnreachableRules WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 5. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && C >= 2] (?,1) 6. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && 0 >= C] (?,1) 7. f3(A,B,C) -> f4(-1 + -1*A,B,1) [A >= 1 && C >= 2] (?,1) 8. f4(A,B,C) -> f3(1 + -1*A,B,0) [0 >= 1 + A && C = 1] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},5->{2,9},6->{8},7->{8},8->{6},9->{1,4}] + Applied Processor: UnreachableRules + Details: Following transitions are not reachable from the starting states and are revomed: [5,6,7,8] * Step 4: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (?,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},9->{1,4}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 5: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (1,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (1,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (?,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},9->{1,4}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f3) = -1*x1 p(f4) = x1 p(f6) = x1 p(f7) = 0 Following rules are strictly oriented: [A >= 1 && C = 1] ==> f4(A,B,C) = A > -1 + A = f3(1 + -1*A,B,0) Following rules are weakly oriented: [A = 0] ==> f3(A,B,C) = -1*A >= 0 = f7(0,D,C) [A = 0] ==> f4(A,B,C) = A >= 0 = f7(0,D,C) [A >= 1] ==> f6(A,B,C) = A >= A = f4(A,B,1) [0 >= 1 + A && 0 >= C] ==> f3(A,B,C) = -1*A >= -1 + -1*A = f4(-1 + -1*A,B,1) * Step 6: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (1,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (1,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (?,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (A,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},9->{1,4}] + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 7: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 1. f3(A,B,C) -> f7(0,D,C) [A = 0] (1,1) 2. f4(A,B,C) -> f7(0,D,C) [A = 0] (1,1) 3. f6(A,B,C) -> f4(A,B,1) [A >= 1] (1,1) 4. f3(A,B,C) -> f4(-1 + -1*A,B,1) [0 >= 1 + A && 0 >= C] (A,1) 9. f4(A,B,C) -> f3(1 + -1*A,B,0) [A >= 1 && C = 1] (A,1) Signature: {(f0,3);(f3,3);(f4,3);(f5,3);(f6,3);(f7,3)} Flow Graph: [1->{},2->{},3->{9},4->{2,9},9->{1,4}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: The problem is already solved. YES(?,O(n^1))