YES(?,POLY) * Step 1: UnsatPaths WORST_CASE(?,POLY) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f64(5,18,0,0,E,F,G) True (1,1) 1. f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] (?,1) 2. f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] (?,1) 3. f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] (?,1) 4. f72(A,B,C,D,E,F,G) -> f75(A,B,C,D,0,F,G) [A >= 1 + D] (?,1) 5. f75(A,B,C,D,E,F,G) -> f75(A,B,C,D,1 + E,H,I) [B >= 1 + E] (?,1) 6. f86(A,B,C,D,E,F,G) -> f92(A,B,C,D,E,H,I) [B >= 1 + D] (?,1) 7. f86(A,B,C,D,E,F,G) -> f86(A,B,C,1 + D,E,H,I) [B >= 1 + D] (?,1) 8. f96(A,B,C,D,E,F,G) -> f96(A,B,C,1 + D,E,F,G) [A >= 1 + D] (?,1) 9. f96(A,B,C,D,E,F,G) -> f92(A,B,C,D,E,F,G) [D >= A] (?,1) 10. f86(A,B,C,D,E,F,G) -> f96(A,B,C,0,E,F,G) [D >= B] (?,1) 11. f75(A,B,C,D,E,F,G) -> f72(A,B,C,1 + D,E,F,G) [E >= B] (?,1) 12. f72(A,B,C,D,E,F,G) -> f86(A,B,C,0,E,F,G) [D >= A] (?,1) 13. f64(A,B,C,D,E,F,G) -> f72(A,B,C,0,E,F,G) [D >= A] (?,1) Signature: {(f0,7);(f64,7);(f72,7);(f75,7);(f86,7);(f92,7);(f96,7)} Flow Graph: [0->{1,2,3,13},1->{1,2,3,13},2->{1,2,3,13},3->{1,2,3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9} ,9->{},10->{8,9},11->{4,12},12->{6,7,10},13->{4,12}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(0,3),(0,13),(1,1),(1,2),(2,3),(3,1),(3,2)] * Step 2: FromIts WORST_CASE(?,POLY) + Considered Problem: Rules: 0. f0(A,B,C,D,E,F,G) -> f64(5,18,0,0,E,F,G) True (1,1) 1. f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] (?,1) 2. f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] (?,1) 3. f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] (?,1) 4. f72(A,B,C,D,E,F,G) -> f75(A,B,C,D,0,F,G) [A >= 1 + D] (?,1) 5. f75(A,B,C,D,E,F,G) -> f75(A,B,C,D,1 + E,H,I) [B >= 1 + E] (?,1) 6. f86(A,B,C,D,E,F,G) -> f92(A,B,C,D,E,H,I) [B >= 1 + D] (?,1) 7. f86(A,B,C,D,E,F,G) -> f86(A,B,C,1 + D,E,H,I) [B >= 1 + D] (?,1) 8. f96(A,B,C,D,E,F,G) -> f96(A,B,C,1 + D,E,F,G) [A >= 1 + D] (?,1) 9. f96(A,B,C,D,E,F,G) -> f92(A,B,C,D,E,F,G) [D >= A] (?,1) 10. f86(A,B,C,D,E,F,G) -> f96(A,B,C,0,E,F,G) [D >= B] (?,1) 11. f75(A,B,C,D,E,F,G) -> f72(A,B,C,1 + D,E,F,G) [E >= B] (?,1) 12. f72(A,B,C,D,E,F,G) -> f86(A,B,C,0,E,F,G) [D >= A] (?,1) 13. f64(A,B,C,D,E,F,G) -> f72(A,B,C,0,E,F,G) [D >= A] (?,1) Signature: {(f0,7);(f64,7);(f72,7);(f75,7);(f86,7);(f92,7);(f96,7)} Flow Graph: [0->{1},1->{3,13},2->{1,2,13},3->{3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9},9->{},10->{8,9} ,11->{4,12},12->{6,7,10},13->{4,12}] + Applied Processor: FromIts + Details: () * Step 3: Unfold WORST_CASE(?,POLY) + Considered Problem: Rules: f0(A,B,C,D,E,F,G) -> f64(5,18,0,0,E,F,G) True f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64(A,B,C,D,E,F,G) -> f64(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f72(A,B,C,D,E,F,G) -> f75(A,B,C,D,0,F,G) [A >= 1 + D] f75(A,B,C,D,E,F,G) -> f75(A,B,C,D,1 + E,H,I) [B >= 1 + E] f86(A,B,C,D,E,F,G) -> f92(A,B,C,D,E,H,I) [B >= 1 + D] f86(A,B,C,D,E,F,G) -> f86(A,B,C,1 + D,E,H,I) [B >= 1 + D] f96(A,B,C,D,E,F,G) -> f96(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96(A,B,C,D,E,F,G) -> f92(A,B,C,D,E,F,G) [D >= A] f86(A,B,C,D,E,F,G) -> f96(A,B,C,0,E,F,G) [D >= B] f75(A,B,C,D,E,F,G) -> f72(A,B,C,1 + D,E,F,G) [E >= B] f72(A,B,C,D,E,F,G) -> f86(A,B,C,0,E,F,G) [D >= A] f64(A,B,C,D,E,F,G) -> f72(A,B,C,0,E,F,G) [D >= A] Signature: {(f0,7);(f64,7);(f72,7);(f75,7);(f86,7);(f92,7);(f96,7)} Rule Graph: [0->{1},1->{3,13},2->{1,2,13},3->{3,13},4->{5,11},5->{5,11},6->{},7->{6,7,10},8->{8,9},9->{},10->{8,9} ,11->{4,12},12->{6,7,10},13->{4,12}] + Applied Processor: Unfold + Details: () * Step 4: AddSinks WORST_CASE(?,POLY) + Considered Problem: Rules: f0.0(A,B,C,D,E,F,G) -> f64.1(5,18,0,0,E,F,G) True f64.1(A,B,C,D,E,F,G) -> f64.3(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64.1(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64.2(A,B,C,D,E,F,G) -> f64.1(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.2(A,B,C,D,E,F,G) -> f64.2(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.2(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.3(A,B,C,D,E,F,G) -> f64.3(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f64.3(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f72.4(A,B,C,D,E,F,G) -> f75.5(A,B,C,D,0,F,G) [A >= 1 + D] f72.4(A,B,C,D,E,F,G) -> f75.11(A,B,C,D,0,F,G) [A >= 1 + D] f75.5(A,B,C,D,E,F,G) -> f75.5(A,B,C,D,1 + E,H,I) [B >= 1 + E] f75.5(A,B,C,D,E,F,G) -> f75.11(A,B,C,D,1 + E,H,I) [B >= 1 + E] f86.6(A,B,C,D,E,F,G) -> f92.14(A,B,C,D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.6(A,B,C,1 + D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.7(A,B,C,1 + D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.10(A,B,C,1 + D,E,H,I) [B >= 1 + D] f96.8(A,B,C,D,E,F,G) -> f96.8(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96.8(A,B,C,D,E,F,G) -> f96.9(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96.9(A,B,C,D,E,F,G) -> f92.14(A,B,C,D,E,F,G) [D >= A] f86.10(A,B,C,D,E,F,G) -> f96.8(A,B,C,0,E,F,G) [D >= B] f86.10(A,B,C,D,E,F,G) -> f96.9(A,B,C,0,E,F,G) [D >= B] f75.11(A,B,C,D,E,F,G) -> f72.4(A,B,C,1 + D,E,F,G) [E >= B] f75.11(A,B,C,D,E,F,G) -> f72.12(A,B,C,1 + D,E,F,G) [E >= B] f72.12(A,B,C,D,E,F,G) -> f86.6(A,B,C,0,E,F,G) [D >= A] f72.12(A,B,C,D,E,F,G) -> f86.7(A,B,C,0,E,F,G) [D >= A] f72.12(A,B,C,D,E,F,G) -> f86.10(A,B,C,0,E,F,G) [D >= A] f64.13(A,B,C,D,E,F,G) -> f72.4(A,B,C,0,E,F,G) [D >= A] f64.13(A,B,C,D,E,F,G) -> f72.12(A,B,C,0,E,F,G) [D >= A] Signature: {(f0.0,7) ;(f64.1,7) ;(f64.13,7) ;(f64.2,7) ;(f64.3,7) ;(f72.12,7) ;(f72.4,7) ;(f75.11,7) ;(f75.5,7) ;(f86.10,7) ;(f86.6,7) ;(f86.7,7) ;(f92.14,7) ;(f96.8,7) ;(f96.9,7)} Rule Graph: [0->{1,2},1->{6,7},2->{26,27},3->{1,2},4->{3,4,5},5->{26,27},6->{6,7},7->{26,27},8->{10,11},9->{21,22} ,10->{10,11},11->{21,22},12->{},13->{12},14->{13,14,15},15->{19,20},16->{16,17},17->{18},18->{},19->{16,17} ,20->{18},21->{8,9},22->{23,24,25},23->{12},24->{13,14,15},25->{19,20},26->{8,9},27->{23,24,25}] + Applied Processor: AddSinks + Details: () * Step 5: Decompose WORST_CASE(?,POLY) + Considered Problem: Rules: f0.0(A,B,C,D,E,F,G) -> f64.1(5,18,0,0,E,F,G) True f64.1(A,B,C,D,E,F,G) -> f64.3(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64.1(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64.2(A,B,C,D,E,F,G) -> f64.1(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.2(A,B,C,D,E,F,G) -> f64.2(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.2(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.3(A,B,C,D,E,F,G) -> f64.3(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f64.3(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f72.4(A,B,C,D,E,F,G) -> f75.5(A,B,C,D,0,F,G) [A >= 1 + D] f72.4(A,B,C,D,E,F,G) -> f75.11(A,B,C,D,0,F,G) [A >= 1 + D] f75.5(A,B,C,D,E,F,G) -> f75.5(A,B,C,D,1 + E,H,I) [B >= 1 + E] f75.5(A,B,C,D,E,F,G) -> f75.11(A,B,C,D,1 + E,H,I) [B >= 1 + E] f86.6(A,B,C,D,E,F,G) -> f92.14(A,B,C,D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.6(A,B,C,1 + D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.7(A,B,C,1 + D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.10(A,B,C,1 + D,E,H,I) [B >= 1 + D] f96.8(A,B,C,D,E,F,G) -> f96.8(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96.8(A,B,C,D,E,F,G) -> f96.9(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96.9(A,B,C,D,E,F,G) -> f92.14(A,B,C,D,E,F,G) [D >= A] f86.10(A,B,C,D,E,F,G) -> f96.8(A,B,C,0,E,F,G) [D >= B] f86.10(A,B,C,D,E,F,G) -> f96.9(A,B,C,0,E,F,G) [D >= B] f75.11(A,B,C,D,E,F,G) -> f72.4(A,B,C,1 + D,E,F,G) [E >= B] f75.11(A,B,C,D,E,F,G) -> f72.12(A,B,C,1 + D,E,F,G) [E >= B] f72.12(A,B,C,D,E,F,G) -> f86.6(A,B,C,0,E,F,G) [D >= A] f72.12(A,B,C,D,E,F,G) -> f86.7(A,B,C,0,E,F,G) [D >= A] f72.12(A,B,C,D,E,F,G) -> f86.10(A,B,C,0,E,F,G) [D >= A] f64.13(A,B,C,D,E,F,G) -> f72.4(A,B,C,0,E,F,G) [D >= A] f64.13(A,B,C,D,E,F,G) -> f72.12(A,B,C,0,E,F,G) [D >= A] f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True Signature: {(exitus616,7) ;(f0.0,7) ;(f64.1,7) ;(f64.13,7) ;(f64.2,7) ;(f64.3,7) ;(f72.12,7) ;(f72.4,7) ;(f75.11,7) ;(f75.5,7) ;(f86.10,7) ;(f86.6,7) ;(f86.7,7) ;(f92.14,7) ;(f96.8,7) ;(f96.9,7)} Rule Graph: [0->{1,2},1->{6,7},2->{26,27},3->{1,2},4->{3,4,5},5->{26,27},6->{6,7},7->{26,27},8->{10,11},9->{21,22} ,10->{10,11},11->{21,22},12->{32,33,38,39,44,45,50,51,56,57,62,63,68,69,74,75,80,81,86,87},13->{12},14->{13 ,14,15},15->{19,20},16->{16,17},17->{18},18->{28,29,30,31,34,35,36,37,40,41,42,43,46,47,48,49,52,53,54,55,58 ,59,60,61,64,65,66,67,70,71,72,73,76,77,78,79,82,83,84,85},19->{16,17},20->{18},21->{8,9},22->{23,24,25} ,23->{12},24->{13,14,15},25->{19,20},26->{8,9},27->{23,24,25}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | +- p:[4] c: [4] | +- p:[6] c: [6] | +- p:[8,21,9,11,10] c: [8,9,11,21] | | | `- p:[10] c: [10] | +- p:[14] c: [14] | `- p:[16] c: [16] * Step 6: AbstractSize WORST_CASE(?,POLY) + Considered Problem: (Rules: f0.0(A,B,C,D,E,F,G) -> f64.1(5,18,0,0,E,F,G) True f64.1(A,B,C,D,E,F,G) -> f64.3(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64.1(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + C,E,F,G) [A >= 1 + D && C = D] f64.2(A,B,C,D,E,F,G) -> f64.1(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.2(A,B,C,D,E,F,G) -> f64.2(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.2(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + D,E,F,G) [A >= 1 + D && C >= 1 + D] f64.3(A,B,C,D,E,F,G) -> f64.3(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f64.3(A,B,C,D,E,F,G) -> f64.13(A,B,C,1 + D,E,F,G) [A >= 1 + D && D >= 1 + C] f72.4(A,B,C,D,E,F,G) -> f75.5(A,B,C,D,0,F,G) [A >= 1 + D] f72.4(A,B,C,D,E,F,G) -> f75.11(A,B,C,D,0,F,G) [A >= 1 + D] f75.5(A,B,C,D,E,F,G) -> f75.5(A,B,C,D,1 + E,H,I) [B >= 1 + E] f75.5(A,B,C,D,E,F,G) -> f75.11(A,B,C,D,1 + E,H,I) [B >= 1 + E] f86.6(A,B,C,D,E,F,G) -> f92.14(A,B,C,D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.6(A,B,C,1 + D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.7(A,B,C,1 + D,E,H,I) [B >= 1 + D] f86.7(A,B,C,D,E,F,G) -> f86.10(A,B,C,1 + D,E,H,I) [B >= 1 + D] f96.8(A,B,C,D,E,F,G) -> f96.8(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96.8(A,B,C,D,E,F,G) -> f96.9(A,B,C,1 + D,E,F,G) [A >= 1 + D] f96.9(A,B,C,D,E,F,G) -> f92.14(A,B,C,D,E,F,G) [D >= A] f86.10(A,B,C,D,E,F,G) -> f96.8(A,B,C,0,E,F,G) [D >= B] f86.10(A,B,C,D,E,F,G) -> f96.9(A,B,C,0,E,F,G) [D >= B] f75.11(A,B,C,D,E,F,G) -> f72.4(A,B,C,1 + D,E,F,G) [E >= B] f75.11(A,B,C,D,E,F,G) -> f72.12(A,B,C,1 + D,E,F,G) [E >= B] f72.12(A,B,C,D,E,F,G) -> f86.6(A,B,C,0,E,F,G) [D >= A] f72.12(A,B,C,D,E,F,G) -> f86.7(A,B,C,0,E,F,G) [D >= A] f72.12(A,B,C,D,E,F,G) -> f86.10(A,B,C,0,E,F,G) [D >= A] f64.13(A,B,C,D,E,F,G) -> f72.4(A,B,C,0,E,F,G) [D >= A] f64.13(A,B,C,D,E,F,G) -> f72.12(A,B,C,0,E,F,G) [D >= A] f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True f92.14(A,B,C,D,E,F,G) -> exitus616(A,B,C,D,E,F,G) True Signature: {(exitus616,7) ;(f0.0,7) ;(f64.1,7) ;(f64.13,7) ;(f64.2,7) ;(f64.3,7) ;(f72.12,7) ;(f72.4,7) ;(f75.11,7) ;(f75.5,7) ;(f86.10,7) ;(f86.6,7) ;(f86.7,7) ;(f92.14,7) ;(f96.8,7) ;(f96.9,7)} Rule Graph: [0->{1,2},1->{6,7},2->{26,27},3->{1,2},4->{3,4,5},5->{26,27},6->{6,7},7->{26,27},8->{10,11},9->{21,22} ,10->{10,11},11->{21,22},12->{32,33,38,39,44,45,50,51,56,57,62,63,68,69,74,75,80,81,86,87},13->{12},14->{13 ,14,15},15->{19,20},16->{16,17},17->{18},18->{28,29,30,31,34,35,36,37,40,41,42,43,46,47,48,49,52,53,54,55,58 ,59,60,61,64,65,66,67,70,71,72,73,76,77,78,79,82,83,84,85},19->{16,17},20->{18},21->{8,9},22->{23,24,25} ,23->{12},24->{13,14,15},25->{19,20},26->{8,9},27->{23,24,25}] ,We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87] | +- p:[4] c: [4] | +- p:[6] c: [6] | +- p:[8,21,9,11,10] c: [8,9,11,21] | | | `- p:[10] c: [10] | +- p:[14] c: [14] | `- p:[16] c: [16]) + Applied Processor: AbstractSize Minimize + Details: () * Step 7: AbstractFlow WORST_CASE(?,POLY) + Considered Problem: Program: Domain: [A,B,C,D,E,F,G,0.0,0.1,0.2,0.2.0,0.3,0.4] f0.0 ~> f64.1 [A <= 5*K, B <= 18*K, C <= 0*K, D <= 0*K, E <= E, F <= F, G <= G] f64.1 ~> f64.3 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f64.1 ~> f64.13 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f64.2 ~> f64.1 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f64.2 ~> f64.2 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f64.2 ~> f64.13 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f64.3 ~> f64.3 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f64.3 ~> f64.13 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f72.4 ~> f75.5 [A <= A, B <= B, C <= C, D <= D, E <= 0*K, F <= F, G <= G] f72.4 ~> f75.11 [A <= A, B <= B, C <= C, D <= D, E <= 0*K, F <= F, G <= G] f75.5 ~> f75.5 [A <= A, B <= B, C <= C, D <= D, E <= B + E, F <= unknown, G <= unknown] f75.5 ~> f75.11 [A <= A, B <= B, C <= C, D <= D, E <= B + E, F <= unknown, G <= unknown] f86.6 ~> f92.14 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= unknown, G <= unknown] f86.7 ~> f86.6 [A <= A, B <= B, C <= C, D <= B + D, E <= E, F <= unknown, G <= unknown] f86.7 ~> f86.7 [A <= A, B <= B, C <= C, D <= B + D, E <= E, F <= unknown, G <= unknown] f86.7 ~> f86.10 [A <= A, B <= B, C <= C, D <= B + D, E <= E, F <= unknown, G <= unknown] f96.8 ~> f96.8 [A <= A, B <= B, C <= C, D <= A + D, E <= E, F <= F, G <= G] f96.8 ~> f96.9 [A <= A, B <= B, C <= C, D <= A + D, E <= E, F <= F, G <= G] f96.9 ~> f92.14 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f86.10 ~> f96.8 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f86.10 ~> f96.9 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f75.11 ~> f72.4 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f75.11 ~> f72.12 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f72.12 ~> f86.6 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f72.12 ~> f86.7 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f72.12 ~> f86.10 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f64.13 ~> f72.4 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f64.13 ~> f72.12 [A <= A, B <= B, C <= C, D <= 0*K, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] f92.14 ~> exitus616 [A <= A, B <= B, C <= C, D <= D, E <= E, F <= F, G <= G] + Loop: [0.0 <= 0*K] f64.2 ~> f64.2 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] + Loop: [0.1 <= K + A + D] f64.3 ~> f64.3 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] + Loop: [0.2 <= K + A + D] f72.4 ~> f75.5 [A <= A, B <= B, C <= C, D <= D, E <= 0*K, F <= F, G <= G] f75.11 ~> f72.4 [A <= A, B <= B, C <= C, D <= K + D, E <= E, F <= F, G <= G] f72.4 ~> f75.11 [A <= A, B <= B, C <= C, D <= D, E <= 0*K, F <= F, G <= G] f75.5 ~> f75.11 [A <= A, B <= B, C <= C, D <= D, E <= B + E, F <= unknown, G <= unknown] f75.5 ~> f75.5 [A <= A, B <= B, C <= C, D <= D, E <= B + E, F <= unknown, G <= unknown] + Loop: [0.2.0 <= K + B + E] f75.5 ~> f75.5 [A <= A, B <= B, C <= C, D <= D, E <= B + E, F <= unknown, G <= unknown] + Loop: [0.3 <= K + B + D] f86.7 ~> f86.7 [A <= A, B <= B, C <= C, D <= B + D, E <= E, F <= unknown, G <= unknown] + Loop: [0.4 <= K + A + D] f96.8 ~> f96.8 [A <= A, B <= B, C <= C, D <= A + D, E <= E, F <= F, G <= G] + Applied Processor: AbstractFlow + Details: () * Step 8: Lare WORST_CASE(?,POLY) + Considered Problem: Program: Domain: [tick,huge,K,A,B,C,D,E,F,G,0.0,0.1,0.2,0.2.0,0.3,0.4] f0.0 ~> f64.1 [K ~=> A,K ~=> B,K ~=> C,K ~=> D] f64.1 ~> f64.3 [D ~+> D,K ~+> D] f64.1 ~> f64.13 [D ~+> D,K ~+> D] f64.2 ~> f64.1 [D ~+> D,K ~+> D] f64.2 ~> f64.2 [D ~+> D,K ~+> D] f64.2 ~> f64.13 [D ~+> D,K ~+> D] f64.3 ~> f64.3 [D ~+> D,K ~+> D] f64.3 ~> f64.13 [D ~+> D,K ~+> D] f72.4 ~> f75.5 [K ~=> E] f72.4 ~> f75.11 [K ~=> E] f75.5 ~> f75.5 [huge ~=> F,huge ~=> G,B ~+> E,E ~+> E] f75.5 ~> f75.11 [huge ~=> F,huge ~=> G,B ~+> E,E ~+> E] f86.6 ~> f92.14 [huge ~=> F,huge ~=> G] f86.7 ~> f86.6 [huge ~=> F,huge ~=> G,B ~+> D,D ~+> D] f86.7 ~> f86.7 [huge ~=> F,huge ~=> G,B ~+> D,D ~+> D] f86.7 ~> f86.10 [huge ~=> F,huge ~=> G,B ~+> D,D ~+> D] f96.8 ~> f96.8 [A ~+> D,D ~+> D] f96.8 ~> f96.9 [A ~+> D,D ~+> D] f96.9 ~> f92.14 [] f86.10 ~> f96.8 [K ~=> D] f86.10 ~> f96.9 [K ~=> D] f75.11 ~> f72.4 [D ~+> D,K ~+> D] f75.11 ~> f72.12 [D ~+> D,K ~+> D] f72.12 ~> f86.6 [K ~=> D] f72.12 ~> f86.7 [K ~=> D] f72.12 ~> f86.10 [K ~=> D] f64.13 ~> f72.4 [K ~=> D] f64.13 ~> f72.12 [K ~=> D] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] f92.14 ~> exitus616 [] + Loop: [K ~=> 0.0] f64.2 ~> f64.2 [D ~+> D,K ~+> D] + Loop: [A ~+> 0.1,D ~+> 0.1,K ~+> 0.1] f64.3 ~> f64.3 [D ~+> D,K ~+> D] + Loop: [A ~+> 0.2,D ~+> 0.2,K ~+> 0.2] f72.4 ~> f75.5 [K ~=> E] f75.11 ~> f72.4 [D ~+> D,K ~+> D] f72.4 ~> f75.11 [K ~=> E] f75.5 ~> f75.11 [huge ~=> F,huge ~=> G,B ~+> E,E ~+> E] f75.5 ~> f75.5 [huge ~=> F,huge ~=> G,B ~+> E,E ~+> E] + Loop: [B ~+> 0.2.0,E ~+> 0.2.0,K ~+> 0.2.0] f75.5 ~> f75.5 [huge ~=> F,huge ~=> G,B ~+> E,E ~+> E] + Loop: [B ~+> 0.3,D ~+> 0.3,K ~+> 0.3] f86.7 ~> f86.7 [huge ~=> F,huge ~=> G,B ~+> D,D ~+> D] + Loop: [A ~+> 0.4,D ~+> 0.4,K ~+> 0.4] f96.8 ~> f96.8 [A ~+> D,D ~+> D] + Applied Processor: Lare + Details: f64.2 ~> exitus616 [K ~=> D ,K ~=> E ,huge ~=> F ,huge ~=> G ,A ~+> D ,A ~+> 0.1 ,A ~+> 0.2 ,A ~+> 0.4 ,A ~+> tick ,B ~+> D ,B ~+> E ,B ~+> 0.2.0 ,B ~+> 0.3 ,B ~+> tick ,D ~+> 0.1 ,D ~+> tick ,tick ~+> tick ,K ~+> D ,K ~+> E ,K ~+> 0.1 ,K ~+> 0.2 ,K ~+> 0.2.0 ,K ~+> 0.3 ,K ~+> 0.4 ,K ~+> tick ,A ~*> D ,A ~*> E ,A ~*> tick ,B ~*> D ,B ~*> E ,B ~*> 0.2.0 ,B ~*> tick ,K ~*> D ,K ~*> E ,K ~*> 0.1 ,K ~*> 0.2 ,K ~*> 0.2.0 ,K ~*> 0.3 ,K ~*> 0.4 ,K ~*> tick ,A ~^> E ,K ~^> E] f0.0 ~> exitus616 [K ~=> A ,K ~=> B ,K ~=> C ,K ~=> D ,K ~=> E ,huge ~=> F ,huge ~=> G ,tick ~+> tick ,K ~+> D ,K ~+> E ,K ~+> 0.1 ,K ~+> 0.2 ,K ~+> 0.2.0 ,K ~+> 0.3 ,K ~+> 0.4 ,K ~+> tick ,K ~*> D ,K ~*> E ,K ~*> 0.1 ,K ~*> 0.2 ,K ~*> 0.2.0 ,K ~*> 0.3 ,K ~*> 0.4 ,K ~*> tick ,K ~^> E] + + f64.3> [A ~+> 0.1 ,A ~+> tick ,D ~+> D ,D ~+> 0.1 ,D ~+> tick ,tick ~+> tick ,K ~+> D ,K ~+> 0.1 ,K ~+> tick ,A ~*> D ,D ~*> D ,K ~*> D] + f75.11> [K ~=> E ,huge ~=> F ,huge ~=> G ,A ~+> 0.2 ,A ~+> tick ,B ~+> E ,B ~+> 0.2.0 ,B ~+> tick ,D ~+> D ,D ~+> 0.2 ,D ~+> tick ,tick ~+> tick ,K ~+> D ,K ~+> E ,K ~+> 0.2 ,K ~+> 0.2.0 ,K ~+> tick ,A ~*> D ,A ~*> E ,A ~*> tick ,B ~*> E ,B ~*> 0.2.0 ,B ~*> tick ,D ~*> D ,D ~*> E ,D ~*> tick ,K ~*> D ,K ~*> E ,K ~*> 0.2.0 ,K ~*> tick ,A ~^> E ,D ~^> E ,K ~^> E] + f75.5> [huge ~=> F ,huge ~=> G ,B ~+> E ,B ~+> 0.2.0 ,B ~+> tick ,E ~+> E ,E ~+> 0.2.0 ,E ~+> tick ,tick ~+> tick ,K ~+> 0.2.0 ,K ~+> tick ,B ~*> E ,E ~*> E ,K ~*> E] + f86.7> [huge ~=> F ,huge ~=> G ,B ~+> D ,B ~+> 0.3 ,B ~+> tick ,D ~+> D ,D ~+> 0.3 ,D ~+> tick ,tick ~+> tick ,K ~+> 0.3 ,K ~+> tick ,B ~*> D ,D ~*> D ,K ~*> D] + f96.8> [A ~+> D ,A ~+> 0.4 ,A ~+> tick ,D ~+> D ,D ~+> 0.4 ,D ~+> tick ,tick ~+> tick ,K ~+> 0.4 ,K ~+> tick ,A ~*> D ,D ~*> D ,K ~*> D] YES(?,POLY)