YES(?,O(1)) * Step 1: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (?,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1,5},1->{1,5},2->{2,3,4},3->{},4->{},5->{2,3,4}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,5),(5,3),(5,4)] * Step 2: TrivialSCCs WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (?,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (?,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (?,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2,3,4},3->{},4->{},5->{2}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (?,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (1,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (1,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (1,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2,3,4},3->{},4->{},5->{2}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 2 p(f10) = 2 + -1*x2 p(f18) = 2 + -1*x2 p(f4) = 2 Following rules are strictly oriented: [1 >= B] ==> f10(A,B) = 2 + -1*B > 1 + -1*B = f10(A,1 + B) Following rules are weakly oriented: True ==> f0(A,B) = 2 >= 2 = f4(0,B) [1 >= A] ==> f4(A,B) = 2 >= 2 = f4(1 + A,B) [B >= 2 && 0 >= 1 + C] ==> f10(A,B) = 2 + -1*B >= 2 + -1*B = f18(A,B) [B >= 2] ==> f10(A,B) = 2 + -1*B >= 2 + -1*B = f18(A,B) [A >= 2] ==> f4(A,B) = 2 >= 2 = f10(A,0) * Step 4: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (?,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (2,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (1,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (1,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (1,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2,3,4},3->{},4->{},5->{2}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 2 p(f10) = -1*x1 p(f18) = -1*x1 p(f4) = 2 + -1*x1 Following rules are strictly oriented: [1 >= A] ==> f4(A,B) = 2 + -1*A > 1 + -1*A = f4(1 + A,B) Following rules are weakly oriented: True ==> f0(A,B) = 2 >= 2 = f4(0,B) [1 >= B] ==> f10(A,B) = -1*A >= -1*A = f10(A,1 + B) [B >= 2 && 0 >= 1 + C] ==> f10(A,B) = -1*A >= -1*A = f18(A,B) [B >= 2] ==> f10(A,B) = -1*A >= -1*A = f18(A,B) [A >= 2] ==> f4(A,B) = 2 + -1*A >= -1*A = f10(A,0) * Step 5: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B) -> f4(0,B) True (1,1) 1. f4(A,B) -> f4(1 + A,B) [1 >= A] (2,1) 2. f10(A,B) -> f10(A,1 + B) [1 >= B] (2,1) 3. f10(A,B) -> f18(A,B) [B >= 2 && 0 >= 1 + C] (1,1) 4. f10(A,B) -> f18(A,B) [B >= 2] (1,1) 5. f4(A,B) -> f10(A,0) [A >= 2] (1,1) Signature: {(f0,2);(f10,2);(f18,2);(f4,2)} Flow Graph: [0->{1},1->{1,5},2->{2,3,4},3->{},4->{},5->{2}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(1))