YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A >= 1 && B >= A] (?,1) 1. eval(A,B) -> eval(B,B) [A >= 1 && A >= 1 + B] (?,1) 2. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1},1->{0,1},2->{0,1}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,1),(1,1)] * Step 2: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A >= 1 && B >= A] (?,1) 1. eval(A,B) -> eval(B,B) [A >= 1 && A >= 1 + B] (?,1) 2. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},1->{0},2->{0,1}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A >= 1 && B >= A] (?,1) 1. eval(A,B) -> eval(B,B) [A >= 1 && A >= 1 + B] (1,1) 2. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},1->{0},2->{0,1}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = x1 p(start) = x1 Following rules are strictly oriented: [A >= 1 && B >= A] ==> eval(A,B) = A > -1 + A = eval(-1 + A,B) [A >= 1 && A >= 1 + B] ==> eval(A,B) = A > B = eval(B,B) Following rules are weakly oriented: True ==> start(A,B) = A >= A = eval(A,B) * Step 4: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(-1 + A,B) [A >= 1 && B >= A] (A,1) 1. eval(A,B) -> eval(B,B) [A >= 1 && A >= 1 + B] (1,1) 2. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0},1->{0},2->{0,1}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))