YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,A) [0 >= A && B = 1] (?,1) 1. eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] (?,1) 2. eval(A,B) -> eval(A,0) [A >= 1 && B = 1] (?,1) 3. eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{0,1,2,3},1->{0,1,2,3},2->{0,1,2,3},3->{0,1,2,3},4->{0,1,2,3}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,0) ,(0,1) ,(0,2) ,(0,3) ,(1,0) ,(1,1) ,(2,0) ,(2,1) ,(2,2) ,(2,3) ,(3,0) ,(3,1)] * Step 2: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,A) [0 >= A && B = 1] (?,1) 1. eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] (?,1) 2. eval(A,B) -> eval(A,0) [A >= 1 && B = 1] (?,1) 3. eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1,2,3}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,A) [0 >= A && B = 1] (1,1) 1. eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] (1,1) 2. eval(A,B) -> eval(A,0) [A >= 1 && B = 1] (1,1) 3. eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] (?,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1,2,3}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval) = 2 + x2 p(start) = 2 + x2 Following rules are strictly oriented: [0 >= A && B = 1] ==> eval(A,B) = 2 + B > 2 + A = eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] ==> eval(A,B) = 2 + B > 2 + A = eval(A,A) [A >= 1 && B = 1] ==> eval(A,B) = 2 + B > 2 = eval(A,0) [B >= 1 && 1 + B >= 0 && A >= B] ==> eval(A,B) = 2 + B > 1 + B = eval(A,-1 + B) Following rules are weakly oriented: True ==> start(A,B) = 2 + B >= 2 + B = eval(A,B) * Step 4: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval(A,B) -> eval(A,A) [0 >= A && B = 1] (1,1) 1. eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] (1,1) 2. eval(A,B) -> eval(A,0) [A >= 1 && B = 1] (1,1) 3. eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] (2 + B,1) 4. start(A,B) -> eval(A,B) True (1,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{},1->{2,3},2->{},3->{2,3},4->{0,1,2,3}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))