YES(?,O(n^1)) * Step 1: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,E,F) -> f4(A,B,C,D,E,H) [B >= 1 && 0 >= A] (?,1) 1. f2(A,B,C,D,E,F) -> f4(A,G,C,D,E,H) [0 >= B && 0 >= G] (?,1) 2. f3(A,B,C,D,E,F) -> f2(A,B,C,D,E,F) True (1,1) 3. f2(A,B,C,D,E,F) -> f2(-1 + A,-1 + B,A,B,-2 + A,F) [A >= 1 && B >= 1] (?,1) Signature: {(f2,6);(f3,6);(f4,6)} Flow Graph: [0->{},1->{},2->{0,1,3},3->{0,1,3}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 2: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,E,F) -> f4(A,B,C,D,E,H) [B >= 1 && 0 >= A] (1,1) 1. f2(A,B,C,D,E,F) -> f4(A,G,C,D,E,H) [0 >= B && 0 >= G] (1,1) 2. f3(A,B,C,D,E,F) -> f2(A,B,C,D,E,F) True (1,1) 3. f2(A,B,C,D,E,F) -> f2(-1 + A,-1 + B,A,B,-2 + A,F) [A >= 1 && B >= 1] (?,1) Signature: {(f2,6);(f3,6);(f4,6)} Flow Graph: [0->{},1->{},2->{0,1,3},3->{0,1,3}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f2) = x1 p(f3) = x1 p(f4) = x1 Following rules are strictly oriented: [A >= 1 && B >= 1] ==> f2(A,B,C,D,E,F) = A > -1 + A = f2(-1 + A,-1 + B,A,B,-2 + A,F) Following rules are weakly oriented: [B >= 1 && 0 >= A] ==> f2(A,B,C,D,E,F) = A >= A = f4(A,B,C,D,E,H) [0 >= B && 0 >= G] ==> f2(A,B,C,D,E,F) = A >= A = f4(A,G,C,D,E,H) True ==> f3(A,B,C,D,E,F) = A >= A = f2(A,B,C,D,E,F) * Step 3: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. f2(A,B,C,D,E,F) -> f4(A,B,C,D,E,H) [B >= 1 && 0 >= A] (1,1) 1. f2(A,B,C,D,E,F) -> f4(A,G,C,D,E,H) [0 >= B && 0 >= G] (1,1) 2. f3(A,B,C,D,E,F) -> f2(A,B,C,D,E,F) True (1,1) 3. f2(A,B,C,D,E,F) -> f2(-1 + A,-1 + B,A,B,-2 + A,F) [A >= 1 && B >= 1] (A,1) Signature: {(f2,6);(f3,6);(f4,6)} Flow Graph: [0->{},1->{},2->{0,1,3},3->{0,1,3}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))