YES(?,O(1)) * Step 1: UnsatPaths WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (?,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,3),(0,4)] * Step 2: TrivialSCCs WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (?,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (?,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (?,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (1,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (1,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 10 p(f23) = 10 + -3*x1 p(f8) = 10 + -3*x1 Following rules are strictly oriented: [A >= 0 && 3 >= A] ==> f8(A,B,C,D) = 10 + -3*A > 7 + -3*A = f8(1 + A,A,1 + A,E) Following rules are weakly oriented: True ==> f0(A,B,C,D) = 10 >= 10 = f8(0,B,C,D) [A >= 0 && 3 >= A] ==> f8(A,B,C,D) = 10 + -3*A >= 7 + -3*A = f8(1 + A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] ==> f8(A,B,C,D) = 10 + -3*A >= 10 + -3*A = f23(A,B,C,D) [A >= 0 && A >= 4] ==> f8(A,B,C,D) = 10 + -3*A >= 10 + -3*A = f23(A,B,C,D) * Step 4: PolyRank WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (?,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (10,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (1,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (1,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(f0) = 4 p(f23) = 4 + -1*x1 p(f8) = 4 + -1*x1 Following rules are strictly oriented: [A >= 0 && 3 >= A] ==> f8(A,B,C,D) = 4 + -1*A > 3 + -1*A = f8(1 + A,B,C,D) [A >= 0 && 3 >= A] ==> f8(A,B,C,D) = 4 + -1*A > 3 + -1*A = f8(1 + A,A,1 + A,E) Following rules are weakly oriented: True ==> f0(A,B,C,D) = 4 >= 4 = f8(0,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] ==> f8(A,B,C,D) = 4 + -1*A >= 4 + -1*A = f23(A,B,C,D) [A >= 0 && A >= 4] ==> f8(A,B,C,D) = 4 + -1*A >= 4 + -1*A = f23(A,B,C,D) * Step 5: KnowledgePropagation WORST_CASE(?,O(1)) + Considered Problem: Rules: 0. f0(A,B,C,D) -> f8(0,B,C,D) True (1,1) 1. f8(A,B,C,D) -> f8(1 + A,B,C,D) [A >= 0 && 3 >= A] (4,1) 2. f8(A,B,C,D) -> f8(1 + A,A,1 + A,E) [A >= 0 && 3 >= A] (10,1) 3. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4 && 0 >= 1 + E] (1,1) 4. f8(A,B,C,D) -> f23(A,B,C,D) [A >= 0 && A >= 4] (1,1) Signature: {(f0,4);(f23,4);(f8,4)} Flow Graph: [0->{1,2},1->{1,2,3,4},2->{1,2,3,4},3->{},4->{}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(1))