YES(?,O(n^1)) * Step 1: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (?,1) 1. eval2(A,B) -> eval2(A,-1 + B) [-1 + A >= 0 && A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [-1 + A >= 0 && A >= 1 && 0 >= B] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x1 p(eval2) = x1 p(start) = x1 Following rules are strictly oriented: [-1 + A >= 0 && A >= 1 && 0 >= B] ==> eval2(A,B) = A > -1 + A = eval1(-1 + A,B) Following rules are weakly oriented: [A >= 1] ==> eval1(A,B) = A >= A = eval2(A,B) [-1 + A >= 0 && A >= 1 && B >= 1] ==> eval2(A,B) = A >= A = eval2(A,-1 + B) True ==> start(A,B) = A >= A = eval1(A,B) * Step 2: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (?,1) 1. eval2(A,B) -> eval2(A,-1 + B) [-1 + A >= 0 && A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [-1 + A >= 0 && A >= 1 && 0 >= B] (A,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: KnowledgePropagation + Details: We propagate bounds from predecessors. * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (1 + A,1) 1. eval2(A,B) -> eval2(A,-1 + B) [-1 + A >= 0 && A >= 1 && B >= 1] (?,1) 2. eval2(A,B) -> eval1(-1 + A,B) [-1 + A >= 0 && A >= 1 && 0 >= B] (A,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x2 p(eval2) = x2 p(start) = x2 Following rules are strictly oriented: [-1 + A >= 0 && A >= 1 && B >= 1] ==> eval2(A,B) = B > -1 + B = eval2(A,-1 + B) Following rules are weakly oriented: [A >= 1] ==> eval1(A,B) = B >= B = eval2(A,B) [-1 + A >= 0 && A >= 1 && 0 >= B] ==> eval2(A,B) = B >= B = eval1(-1 + A,B) True ==> start(A,B) = B >= B = eval1(A,B) * Step 4: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1] (1 + A,1) 1. eval2(A,B) -> eval2(A,-1 + B) [-1 + A >= 0 && A >= 1 && B >= 1] (B,1) 2. eval2(A,B) -> eval1(-1 + A,B) [-1 + A >= 0 && A >= 1 && 0 >= B] (A,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))