YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 2: TrivialSCCs WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: TrivialSCCs + Details: All trivial SCCs of the transition graph admit timebound 1. * Step 3: PolyRank WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (1,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] (1,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: PolyRank {useFarkas = True, withSizebounds = [], shape = Linear} + Details: We apply a polynomial interpretation of shape linear: p(eval1) = x1 p(eval2) = x1 p(start) = x1 Following rules are strictly oriented: [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] ==> eval2(A,B) = A > -1 + A = eval2(-1 + A,-1 + B) Following rules are weakly oriented: [A >= 1 && B = A] ==> eval1(A,B) = A >= A = eval2(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] ==> eval2(A,B) = A >= A = eval1(A,B) True ==> start(A,B) = A >= A = eval1(A,B) * Step 4: KnowledgePropagation WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (1,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] (A,1) 2. eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] (1,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: KnowledgePropagation + Details: The problem is already solved. YES(?,O(n^1))