MAYBE * Step 1: ArgumentFilter MAYBE + Considered Problem: Rules: 0. f300(A,B,C) -> f2(A,B,C) True (1,1) 1. f2(A,B,C) -> f1(A,0,D) [0 >= A] (?,1) 2. f2(A,B,C) -> f2(A,0,C) [A >= 1] (?,1) 3. f2(A,B,C) -> f1(-1 + A,D,E) [0 >= 1 + D && 1 >= A] (?,1) 4. f2(A,B,C) -> f1(-1 + A,D,E) [D >= 1 && 1 >= A] (?,1) 5. f2(A,B,C) -> f2(-1 + A,D,C) [0 >= 1 + D && A >= 2] (?,1) 6. f2(A,B,C) -> f2(-1 + A,D,C) [D >= 1 && A >= 2] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{1,2,3,4,5,6},3->{},4->{},5->{1,2,3,4,5,6},6->{1,2,3,4,5,6}] + Applied Processor: ArgumentFilter [1,2] + Details: We remove following argument positions: [1,2]. * Step 2: UnsatPaths MAYBE + Considered Problem: Rules: 0. f300(A) -> f2(A) True (1,1) 1. f2(A) -> f1(A) [0 >= A] (?,1) 2. f2(A) -> f2(A) [A >= 1] (?,1) 3. f2(A) -> f1(-1 + A) [0 >= 1 + D && 1 >= A] (?,1) 4. f2(A) -> f1(-1 + A) [D >= 1 && 1 >= A] (?,1) 5. f2(A) -> f2(-1 + A) [0 >= 1 + D && A >= 2] (?,1) 6. f2(A) -> f2(-1 + A) [D >= 1 && A >= 2] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{1,2,3,4,5,6},3->{},4->{},5->{1,2,3,4,5,6},6->{1,2,3,4,5,6}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,1),(5,1),(6,1)] * Step 3: FromIts MAYBE + Considered Problem: Rules: 0. f300(A) -> f2(A) True (1,1) 1. f2(A) -> f1(A) [0 >= A] (?,1) 2. f2(A) -> f2(A) [A >= 1] (?,1) 3. f2(A) -> f1(-1 + A) [0 >= 1 + D && 1 >= A] (?,1) 4. f2(A) -> f1(-1 + A) [D >= 1 && 1 >= A] (?,1) 5. f2(A) -> f2(-1 + A) [0 >= 1 + D && A >= 2] (?,1) 6. f2(A) -> f2(-1 + A) [D >= 1 && A >= 2] (?,1) Signature: {(f1,3);(f2,3);(f300,3)} Flow Graph: [0->{1,2,3,4,5,6},1->{},2->{2,3,4,5,6},3->{},4->{},5->{2,3,4,5,6},6->{2,3,4,5,6}] + Applied Processor: FromIts + Details: () * Step 4: AddSinks MAYBE + Considered Problem: Rules: f300(A) -> f2(A) True f2(A) -> f1(A) [0 >= A] f2(A) -> f2(A) [A >= 1] f2(A) -> f1(-1 + A) [0 >= 1 + D && 1 >= A] f2(A) -> f1(-1 + A) [D >= 1 && 1 >= A] f2(A) -> f2(-1 + A) [0 >= 1 + D && A >= 2] f2(A) -> f2(-1 + A) [D >= 1 && A >= 2] Signature: {(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{1,2,3,4,5,6},1->{},2->{2,3,4,5,6},3->{},4->{},5->{2,3,4,5,6},6->{2,3,4,5,6}] + Applied Processor: AddSinks + Details: () * Step 5: Failure MAYBE + Considered Problem: Rules: f300(A) -> f2(A) True f2(A) -> f1(A) [0 >= A] f2(A) -> f2(A) [A >= 1] f2(A) -> f1(-1 + A) [0 >= 1 + D && 1 >= A] f2(A) -> f1(-1 + A) [D >= 1 && 1 >= A] f2(A) -> f2(-1 + A) [0 >= 1 + D && A >= 2] f2(A) -> f2(-1 + A) [D >= 1 && A >= 2] f1(A) -> exitus616(A) True f1(A) -> exitus616(A) True f1(A) -> exitus616(A) True Signature: {(exitus616,1);(f1,3);(f2,3);(f300,3)} Rule Graph: [0->{1,2,3,4,5,6},1->{9},2->{2,3,4,5,6},3->{8},4->{7},5->{2,3,4,5,6},6->{2,3,4,5,6}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6,7,8,9] | `- p:[2,5,6] c: [5,6] | `- p:[2] c: [] MAYBE