YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (?,1) 3. div(A,B) -> end(A,B) [0 >= A] (?,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2,3},2->{},3->{}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3)] * Step 2: FromIts WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> div(A,B) True (1,1) 1. div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] (?,1) 2. div(A,B) -> end(A,B) [A >= B] (?,1) 3. div(A,B) -> end(A,B) [0 >= A] (?,1) Signature: {(div,2);(end,2);(start,2)} Flow Graph: [0->{1,2,3},1->{1,2},2->{},3->{}] + Applied Processor: FromIts + Details: () * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: start(A,B) -> div(A,B) True div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] div(A,B) -> end(A,B) [A >= B] div(A,B) -> end(A,B) [0 >= A] Signature: {(div,2);(end,2);(start,2)} Rule Graph: [0->{1,2,3},1->{1,2},2->{},3->{}] + Applied Processor: AddSinks + Details: () * Step 4: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: Rules: start(A,B) -> div(A,B) True div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] div(A,B) -> end(A,B) [A >= B] div(A,B) -> end(A,B) [0 >= A] end(A,B) -> exitus616(A,B) True end(A,B) -> exitus616(A,B) True Signature: {(div,2);(end,2);(exitus616,2);(start,2)} Rule Graph: [0->{1,2,3},1->{1,2},2->{5},3->{4}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5] | `- p:[1] c: [1] * Step 5: AbstractSize WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: start(A,B) -> div(A,B) True div(A,B) -> div(A,-1*A + B) [B >= 1 + A && A >= 1] div(A,B) -> end(A,B) [A >= B] div(A,B) -> end(A,B) [0 >= A] end(A,B) -> exitus616(A,B) True end(A,B) -> exitus616(A,B) True Signature: {(div,2);(end,2);(exitus616,2);(start,2)} Rule Graph: [0->{1,2,3},1->{1,2},2->{5},3->{4}] ,We construct a looptree: P: [0,1,2,3,4,5] | `- p:[1] c: [1]) + Applied Processor: AbstractSize Minimize + Details: () * Step 6: AbstractFlow WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,0.0] start ~> div [A <= A, B <= B] div ~> div [A <= A, B <= B] div ~> end [A <= A, B <= B] div ~> end [A <= A, B <= B] end ~> exitus616 [A <= A, B <= B] end ~> exitus616 [A <= A, B <= B] + Loop: [0.0 <= K + A + B] div ~> div [A <= A, B <= B] + Applied Processor: AbstractFlow + Details: () * Step 7: Lare WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,0.0] start ~> div [] div ~> div [] div ~> end [] div ~> end [] end ~> exitus616 [] end ~> exitus616 [] + Loop: [A ~+> 0.0,B ~+> 0.0,K ~+> 0.0] div ~> div [] + Applied Processor: Lare + Details: start ~> exitus616 [A ~+> 0.0,A ~+> tick,B ~+> 0.0,B ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] +
div> [A ~+> 0.0,A ~+> tick,B ~+> 0.0,B ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] YES(?,O(n^1))