YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval0(A,B,C) -> eval1(A,B,C) [A >= 1] (1,1) 1. eval1(A,B,C) -> eval1(A,A + B,C) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] (?,1) 2. eval1(A,B,C) -> eval1(A,B,-1*A + B) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] (?,1) Signature: {(eval0,3);(eval1,3)} Flow Graph: [0->{1,2},1->{1,2},2->{1,2}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(2,1),(2,2)] * Step 2: FromIts WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval0(A,B,C) -> eval1(A,B,C) [A >= 1] (1,1) 1. eval1(A,B,C) -> eval1(A,A + B,C) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] (?,1) 2. eval1(A,B,C) -> eval1(A,B,-1*A + B) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] (?,1) Signature: {(eval0,3);(eval1,3)} Flow Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: FromIts + Details: () * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: eval0(A,B,C) -> eval1(A,B,C) [A >= 1] eval1(A,B,C) -> eval1(A,A + B,C) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> eval1(A,B,-1*A + B) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] Signature: {(eval0,3);(eval1,3)} Rule Graph: [0->{1,2},1->{1,2},2->{}] + Applied Processor: AddSinks + Details: () * Step 4: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: Rules: eval0(A,B,C) -> eval1(A,B,C) [A >= 1] eval1(A,B,C) -> eval1(A,A + B,C) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> eval1(A,B,-1*A + B) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> exitus616(A,B,C) True Signature: {(eval0,3);(eval1,3);(exitus616,3)} Rule Graph: [0->{1,2},1->{1,2},2->{3}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3] | `- p:[1] c: [1] * Step 5: AbstractSize WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: eval0(A,B,C) -> eval1(A,B,C) [A >= 1] eval1(A,B,C) -> eval1(A,A + B,C) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> eval1(A,B,-1*A + B) [-1 + A >= 0 && A >= 1 + B && C >= 1 + A && A >= 1] eval1(A,B,C) -> exitus616(A,B,C) True Signature: {(eval0,3);(eval1,3);(exitus616,3)} Rule Graph: [0->{1,2},1->{1,2},2->{3}] ,We construct a looptree: P: [0,1,2,3] | `- p:[1] c: [1]) + Applied Processor: AbstractSize Minimize + Details: () * Step 6: AbstractFlow WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,C,0.0] eval0 ~> eval1 [A <= A, B <= B, C <= C] eval1 ~> eval1 [A <= A, B <= A + B, C <= C] eval1 ~> eval1 [A <= A, B <= B, C <= B + C] eval1 ~> exitus616 [A <= A, B <= B, C <= C] + Loop: [0.0 <= K + A + B] eval1 ~> eval1 [A <= A, B <= A + B, C <= C] + Applied Processor: AbstractFlow + Details: () * Step 7: Lare WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,C,0.0] eval0 ~> eval1 [] eval1 ~> eval1 [A ~+> B,B ~+> B] eval1 ~> eval1 [B ~+> C,C ~+> C] eval1 ~> exitus616 [] + Loop: [A ~+> 0.0,B ~+> 0.0,K ~+> 0.0] eval1 ~> eval1 [A ~+> B,B ~+> B] + Applied Processor: Lare + Details: eval0 ~> exitus616 [A ~+> B ,A ~+> 0.0 ,A ~+> tick ,B ~+> B ,B ~+> C ,B ~+> 0.0 ,B ~+> tick ,C ~+> C ,tick ~+> tick ,K ~+> 0.0 ,K ~+> tick ,A ~*> B ,B ~*> B ,K ~*> B] + eval1> [A ~+> B ,A ~+> 0.0 ,A ~+> tick ,B ~+> B ,B ~+> 0.0 ,B ~+> tick ,tick ~+> tick ,K ~+> 0.0 ,K ~+> tick ,A ~*> B ,B ~*> B ,K ~*> B] YES(?,O(n^1))