YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 2: FromIts WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] (?,1) 1. eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] (?,1) 2. eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] (?,1) 3. start(A,B,C) -> eval1(A,B,C) True (1,1) Signature: {(eval1,3);(eval2,3);(start,3)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: FromIts + Details: () * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] start(A,B,C) -> eval1(A,B,C) True Signature: {(eval1,3);(eval2,3);(start,3)} Rule Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: AddSinks + Details: () * Step 4: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: Rules: eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] start(A,B,C) -> eval1(A,B,C) True eval1(A,B,C) -> exitus616(A,B,C) True Signature: {(eval1,3);(eval2,3);(exitus616,3);(start,3)} Rule Graph: [0->{1},1->{1,2},2->{4},3->{0}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1] * Step 5: AbstractSize WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: eval1(A,B,C) -> eval2(A,B,C) [A >= 1 + B && C = A] eval2(A,B,C) -> eval2(-1 + A,B,-1 + C) [A + -1*C >= 0 && -1*A + C >= 0 && A >= 1 + B] eval2(A,B,C) -> eval1(A,B,C) [A + -1*C >= 0 && -1*A + C >= 0 && B >= A] start(A,B,C) -> eval1(A,B,C) True eval1(A,B,C) -> exitus616(A,B,C) True Signature: {(eval1,3);(eval2,3);(exitus616,3);(start,3)} Rule Graph: [0->{1},1->{1,2},2->{4},3->{0}] ,We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1]) + Applied Processor: AbstractSize Minimize + Details: () * Step 6: AbstractFlow WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,C,0.0] eval1 ~> eval2 [A <= A, B <= B, C <= C] eval2 ~> eval2 [A <= K + C, B <= B, C <= K + C] eval2 ~> eval1 [A <= A, B <= B, C <= C] start ~> eval1 [A <= A, B <= B, C <= C] eval1 ~> exitus616 [A <= A, B <= B, C <= C] + Loop: [0.0 <= K + A + B] eval2 ~> eval2 [A <= K + C, B <= B, C <= K + C] + Applied Processor: AbstractFlow + Details: () * Step 7: Lare WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,C,0.0] eval1 ~> eval2 [] eval2 ~> eval2 [C ~+> A,C ~+> C,K ~+> A,K ~+> C] eval2 ~> eval1 [] start ~> eval1 [] eval1 ~> exitus616 [] + Loop: [A ~+> 0.0,B ~+> 0.0,K ~+> 0.0] eval2 ~> eval2 [C ~+> A,C ~+> C,K ~+> A,K ~+> C] + Applied Processor: Lare + Details: start ~> exitus616 [A ~+> 0.0 ,A ~+> tick ,B ~+> 0.0 ,B ~+> tick ,C ~+> A ,C ~+> C ,tick ~+> tick ,K ~+> A ,K ~+> C ,K ~+> 0.0 ,K ~+> tick ,A ~*> C ,B ~*> C ,K ~*> A ,K ~*> C] + eval2> [A ~+> 0.0 ,A ~+> tick ,B ~+> 0.0 ,B ~+> tick ,C ~+> A ,C ~+> C ,tick ~+> tick ,K ~+> A ,K ~+> C ,K ~+> 0.0 ,K ~+> tick ,A ~*> C ,B ~*> C ,K ~*> A ,K ~*> C] YES(?,O(n^1))