YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1,2},1->{1,2},2->{0},3->{0}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(0,2),(2,0)] * Step 2: FromIts WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] (?,1) 1. eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] (?,1) 2. eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] (?,1) 3. start(A,B) -> eval1(A,B) True (1,1) Signature: {(eval1,2);(eval2,2);(start,2)} Flow Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: FromIts + Details: () * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] start(A,B) -> eval1(A,B) True Signature: {(eval1,2);(eval2,2);(start,2)} Rule Graph: [0->{1},1->{1,2},2->{},3->{0}] + Applied Processor: AddSinks + Details: () * Step 4: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: Rules: eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] start(A,B) -> eval1(A,B) True eval1(A,B) -> exitus616(A,B) True Signature: {(eval1,2);(eval2,2);(exitus616,2);(start,2)} Rule Graph: [0->{1},1->{1,2},2->{4},3->{0}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1] * Step 5: AbstractSize WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: eval1(A,B) -> eval2(A,B) [A >= 1 && B = A] eval2(A,B) -> eval2(-1 + A,-1 + B) [A + -1*B >= 0 && -1*A + B >= 0 && A >= 1] eval2(A,B) -> eval1(A,B) [A + -1*B >= 0 && -1*A + B >= 0 && 0 >= A] start(A,B) -> eval1(A,B) True eval1(A,B) -> exitus616(A,B) True Signature: {(eval1,2);(eval2,2);(exitus616,2);(start,2)} Rule Graph: [0->{1},1->{1,2},2->{4},3->{0}] ,We construct a looptree: P: [0,1,2,3,4] | `- p:[1] c: [1]) + Applied Processor: AbstractSize Minimize + Details: () * Step 6: AbstractFlow WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,0.0] eval1 ~> eval2 [A <= A, B <= B] eval2 ~> eval2 [A <= B, B <= B] eval2 ~> eval1 [A <= A, B <= B] start ~> eval1 [A <= A, B <= B] eval1 ~> exitus616 [A <= A, B <= B] + Loop: [0.0 <= K + A] eval2 ~> eval2 [A <= B, B <= B] + Applied Processor: AbstractFlow + Details: () * Step 7: Lare WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,0.0] eval1 ~> eval2 [] eval2 ~> eval2 [B ~=> A] eval2 ~> eval1 [] start ~> eval1 [] eval1 ~> exitus616 [] + Loop: [A ~+> 0.0,K ~+> 0.0] eval2 ~> eval2 [B ~=> A] + Applied Processor: Lare + Details: start ~> exitus616 [B ~=> A,A ~+> 0.0,A ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] + eval2> [B ~=> A,A ~+> 0.0,A ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] YES(?,O(n^1))