YES(?,O(n^1)) * Step 1: UnsatPaths WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] (?,1) 2. eval(A,B) -> eval(A,0) [A >= 1 && B = 1] (?,1) 3. eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] (?,1) 4. eval(A,B) -> eval(A,A) [0 >= A && B = 1] (?,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3,4},1->{1,2,3,4},2->{1,2,3,4},3->{1,2,3,4},4->{1,2,3,4}] + Applied Processor: UnsatPaths + Details: We remove following edges from the transition graph: [(1,3) ,(1,4) ,(2,1) ,(2,2) ,(2,3) ,(2,4) ,(3,3) ,(3,4) ,(4,1) ,(4,2) ,(4,3) ,(4,4)] * Step 2: FromIts WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A,B) -> eval(A,B) True (1,1) 1. eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] (?,1) 2. eval(A,B) -> eval(A,0) [A >= 1 && B = 1] (?,1) 3. eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] (?,1) 4. eval(A,B) -> eval(A,A) [0 >= A && B = 1] (?,1) Signature: {(eval,2);(start,2)} Flow Graph: [0->{1,2,3,4},1->{1,2},2->{},3->{1,2},4->{}] + Applied Processor: FromIts + Details: () * Step 3: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: start(A,B) -> eval(A,B) True eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] eval(A,B) -> eval(A,0) [A >= 1 && B = 1] eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] eval(A,B) -> eval(A,A) [0 >= A && B = 1] Signature: {(eval,2);(start,2)} Rule Graph: [0->{1,2,3,4},1->{1,2},2->{},3->{1,2},4->{}] + Applied Processor: AddSinks + Details: () * Step 4: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: Rules: start(A,B) -> eval(A,B) True eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] eval(A,B) -> eval(A,0) [A >= 1 && B = 1] eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] eval(A,B) -> eval(A,A) [0 >= A && B = 1] eval(A,B) -> exitus616(A,B) True eval(A,B) -> exitus616(A,B) True Signature: {(eval,2);(exitus616,2);(start,2)} Rule Graph: [0->{1,2,3,4},1->{1,2},2->{6},3->{1,2},4->{5}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2,3,4,5,6] | `- p:[1] c: [1] * Step 5: AbstractSize WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: start(A,B) -> eval(A,B) True eval(A,B) -> eval(A,-1 + B) [B >= 1 && 1 + B >= 0 && A >= B] eval(A,B) -> eval(A,0) [A >= 1 && B = 1] eval(A,B) -> eval(A,A) [B >= 1 && 1 + B >= 0 && B >= 1 + A] eval(A,B) -> eval(A,A) [0 >= A && B = 1] eval(A,B) -> exitus616(A,B) True eval(A,B) -> exitus616(A,B) True Signature: {(eval,2);(exitus616,2);(start,2)} Rule Graph: [0->{1,2,3,4},1->{1,2},2->{6},3->{1,2},4->{5}] ,We construct a looptree: P: [0,1,2,3,4,5,6] | `- p:[1] c: [1]) + Applied Processor: AbstractSize Minimize + Details: () * Step 6: AbstractFlow WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,B,0.0] start ~> eval [A <= A, B <= B] eval ~> eval [A <= A, B <= B] eval ~> eval [A <= A, B <= 0*K] eval ~> eval [A <= A, B <= A] eval ~> eval [A <= A, B <= A] eval ~> exitus616 [A <= A, B <= B] eval ~> exitus616 [A <= A, B <= B] + Loop: [0.0 <= K + B] eval ~> eval [A <= A, B <= B] + Applied Processor: AbstractFlow + Details: () * Step 7: Lare WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,B,0.0] start ~> eval [] eval ~> eval [] eval ~> eval [K ~=> B] eval ~> eval [A ~=> B] eval ~> eval [A ~=> B] eval ~> exitus616 [] eval ~> exitus616 [] + Loop: [B ~+> 0.0,K ~+> 0.0] eval ~> eval [] + Applied Processor: Lare + Details: start ~> exitus616 [A ~=> B,K ~=> B,B ~+> 0.0,B ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] + eval> [B ~+> 0.0,B ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] YES(?,O(n^1))