YES(?,O(n^1)) * Step 1: FromIts WORST_CASE(?,O(n^1)) + Considered Problem: Rules: 0. start(A) -> eval(A) True (1,1) 1. eval(A) -> eval(2*B) [2*B >= 0 && A = 1 + 2*B] (?,1) Signature: {(eval,1);(start,1)} Flow Graph: [0->{1},1->{1}] + Applied Processor: FromIts + Details: () * Step 2: AddSinks WORST_CASE(?,O(n^1)) + Considered Problem: Rules: start(A) -> eval(A) True eval(A) -> eval(2*B) [2*B >= 0 && A = 1 + 2*B] Signature: {(eval,1);(start,1)} Rule Graph: [0->{1},1->{1}] + Applied Processor: AddSinks + Details: () * Step 3: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: Rules: start(A) -> eval(A) True eval(A) -> eval(2*B) [2*B >= 0 && A = 1 + 2*B] eval(A) -> exitus616(A) True Signature: {(eval,1);(exitus616,1);(start,1)} Rule Graph: [0->{1},1->{1,2}] + Applied Processor: Decompose Greedy + Details: We construct a looptree: P: [0,1,2] | `- p:[1] c: [1] * Step 4: AbstractSize WORST_CASE(?,O(n^1)) + Considered Problem: (Rules: start(A) -> eval(A) True eval(A) -> eval(2*B) [2*B >= 0 && A = 1 + 2*B] eval(A) -> exitus616(A) True Signature: {(eval,1);(exitus616,1);(start,1)} Rule Graph: [0->{1},1->{1,2}] ,We construct a looptree: P: [0,1,2] | `- p:[1] c: [1]) + Applied Processor: AbstractSize Minimize + Details: () * Step 5: AbstractFlow WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [A,0.0] start ~> eval [A <= A] eval ~> eval [A <= A] eval ~> exitus616 [A <= A] + Loop: [0.0 <= K + A] eval ~> eval [A <= A] + Applied Processor: AbstractFlow + Details: () * Step 6: Lare WORST_CASE(?,O(n^1)) + Considered Problem: Program: Domain: [tick,huge,K,A,0.0] start ~> eval [] eval ~> eval [] eval ~> exitus616 [] + Loop: [A ~+> 0.0,K ~+> 0.0] eval ~> eval [] + Applied Processor: Lare + Details: start ~> exitus616 [A ~+> 0.0,A ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] + eval> [A ~+> 0.0,A ~+> tick,tick ~+> tick,K ~+> 0.0,K ~+> tick] YES(?,O(n^1))